humoral responses
Recently Published Documents


TOTAL DOCUMENTS

833
(FIVE YEARS 219)

H-INDEX

57
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Laura Esparcia-Pinedo ◽  
Ayla Yarci-Carrion ◽  
Gloria Mateo-Jimenez ◽  
Noelia Ropero ◽  
Laura Gomez-Cabanas ◽  
...  

Immune dysregulation in individuals with Down syndrome (DS) leads to an increased risk for hospitalization and death due to COVID-19 and may impair the generation of protective immunity after vaccine administration. The cellular and humoral responses of 55 DS patients who received a complete SARS-CoV-2 vaccination regime at one to three (V1) and six (V2) months were characterised. SARS-CoV-2-reactive CD4+ and CD8+ T lymphocytes with a predominant Th1 phenotype were observed at V1, and increased at V2. Likewise, a sustained increase of SARS-CoV-2-specific circulating Tfh (cTfh) cells was observed one to three months after vaccine administration. Specific IgG antibodies against SARS-CoV-2 S protein were detected in 96% and 98% of subjects at V1 and V2, respectively, though IgG titers decreased significantly between both timepoints.


2022 ◽  
Vol 219 (3) ◽  
Author(s):  
Xin Liu ◽  
Yongshan Zhao ◽  
Hai Qi

T-dependent humoral responses generate long-lived memory B cells and plasma cells (PCs) predominantly through germinal center (GC) reaction. In human and mouse, memory B cells and long-lived PCs are also generated during immune responses to T-independent antigen, including bacterial polysaccharides, although the underlying mechanism for such T-independent humoral memory is not clear. While T-independent antigen can induce GCs, they are transient and thought to be nonproductive. Unexpectedly, by genetic fate-mapping, we find that these GCs actually output memory B cells and PCs. Using a conditional BCL6 deletion approach, we show memory B cells and PCs fail to last when T-independent GCs are precluded, suggesting that the GC experience per se is important for programming longevity of T-independent memory B cells and PCs. Consistent with the fact that infants cannot mount long-lived humoral memory to T-independent antigen, B cells from young animals intrinsically fail to form T-independent GCs. Our results suggest that T-independent GCs support humoral memory, and GC induction may be key to effective vaccines with T-independent antigen.


2022 ◽  
Author(s):  
Anupriya Aggarwal ◽  
Alberto Stella ◽  
Gregory Walker ◽  
Anouschka Akerman ◽  
Vanessa Milogiannakis ◽  
...  

Abstract Genetically distinct viral variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recorded since January 2020. Over this time global vaccine programs have been introduced, contributing to lowered COVID-19 hospitalisation and mortality rates, particularly in the first world. In late 2021, the Omicron (B.1.1.529) virus variant emerged, with significant genetic differences and clinical effects from other variants of concern (VOC). This variant a demonstrated higher number of polymorphisms in the gene encoding the Spike (S) protein, and there has been displacement of the dominant Delta variant. We assessed the impact of Omicron infection on the ability of: serum from vaccinated and/or previously infected individuals; concentrated human IgG from plasma donors, and licensed monoclonal antibody therapies to neutralise the virus in vitro. There was a 17 to 27-fold reduction in neutralisation titres across all donors who had a detectable neutralising antibody titre to the Omicron variant. Concentrated pooled human IgG from convalescent and vaccinated donors had greater breadth of neutralisation, although the potency was still reduced 16-fold. Of all therapeutic antibodies tested, significant neutralisation of the Omicron variant was only observed for Sotrovimab, with other monoclonal antibodies unable to neutralise Omicron in vitro. These results have implications for ongoing therapy of individuals infected with the Omicron variant.


2022 ◽  
Author(s):  
Patrick Taeschler ◽  
Carlo Cervia ◽  
Yves Zurbuchen ◽  
Sara Hasler ◽  
Christian Pou ◽  
...  

Background: Several autoimmune features occur during coronavirus disease 2019 (COVID-19), with possible implications for disease course, immunity, and autoimmune pathology. Objective: We longitudinally screened for clinically relevant systemic autoantibodies to assess their prevalence, temporal trajectory, and association with immunity, comorbidities, and severity of COVID-19. Methods: We performed highly sensitive indirect immunofluorescence assays to detect anti-nuclear antibodies (ANA) and anti-neutrophil cytoplasmic antibodies (ANCA), along with serum proteomics and virome-wide serological profiling in a multicentric cohort of 175 COVID-19 patients followed-up to one year after infection, eleven vaccinated individuals, and 41 unexposed controls. Results: Compared to healthy controls, similar prevalence and patterns of ANA were present in patients during acute COVID-19 and recovery. However, paired analysis revealed a subgroup of patients with transient presence of certain ANA patterns during acute COVID-19. Furthermore, patients with severe COVID-19 exhibited a high prevalence of ANCA during acute disease. These autoantibodies were quantitatively associated with higher SARS-CoV-2-specific antibody titers in COVID-19 patients and in vaccinated individuals, thus linking autoantibody production to increased antigen-specific humoral responses. Notably, the qualitative breadth of antibodies cross-reactive with other coronaviruses was comparable in ANA-positive and ANA-negative individuals during acute COVID-19. In autoantibody-positive patients, multiparametric characterization demonstrated an inflammatory signature during acute COVID-19 and alterations of the B cell compartment after recovery. Conclusion: Highly sensitive indirect immunofluorescence assays revealed transient autoantibody production during acute SARS-CoV-2 infection, while the presence of autoantibodies in COVID-19 patients correlated with increased anti-viral humoral immune responses and inflammatory immune signatures.


2022 ◽  
Author(s):  
Dinesh Mohanraj ◽  
Samuel Baldwin ◽  
Satbeer Singh ◽  
Alun Gordon ◽  
Alison Whitelegg

Abstract Objective: SARS-CoV-2 vaccinations have demonstrated vaccine-immunogenicity in healthy volunteers, however, efficacy in immunosuppressed patients is less well characterised. There is an urgent need to address the impact of immunosuppression on vaccine immunogenicity. Methods: Serological, T-cell ELISpot, cytokines and immunophenotyping assays were used to assess vaccine responses (either BNT162b2 mRNA or ChAdOx1 nCoV-19) in double-vaccinated patients receiving immunosuppression for renal transplants or haematological malignancies (n=13). Immunological responses in immunosuppressed patients (VACC-IS) were compared to immunocompetent vaccinated (VACC-IC, n=12), unvaccinated (UNVACC, n=11) and infection-naïve unvaccinated (HC, n=3) cohorts. All participants, except HC, had prior COVID-19 infection. Results: T-cell responses were identical between VACC-IS and VACC-IC (92%) to spike-peptide (S) stimulation. UNVACC had the highest T-cell non-responders (n=3), whereas VACC-IC and VACC-IS both had one T-cell non-responder. No significant differences in humoral responses were observed between VACC-IC and VACC-IS, with 92% (12/13) of VACC-IS patients demonstrating seropositivity. One VACC-IS failed to seroconvert, however had detectable T-cell responses. All VACC-IC participants were seropositive for anti-spike antibodies. VACC-IS and VACC-IC participants elicited strong Th1 cytokine response with immunodominance towards S-peptide. Differences in T-cell immunophenotyping were seen between VACC-IS and VACC-IC, with lower CD8+ activation and T-effector memory phenotype observed in VACC-IS. Conclusion: SARS-CoV-2 vaccines are immunogenic in patients receiving immunosuppressive therapy, with responses comparable to vaccinated immunocompetent participants. Lower humoral responses were seen in patients treated with B-cell depleting therapeutics, but with preserved T-cell responses. We suggest further work to correlate both protective immunity and longevity of these responses in both healthy and immunosuppressed patients.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Rikei Kozakai ◽  
Akira Kushida ◽  
Paul Franck Adeyissimi Adjou Moumouni ◽  
Sadatsugu Okuma ◽  
Kazuya Takahashi ◽  
...  

Abstract Objectives An effective vaccine against SARS-CoV-2 is essential to mitigate the COVID-19 pandemic. In these several months, a number of groups have started to report humoral responses and side effects after BNT162b2 vaccinations. Although these reports demonstrate the safety and efficacy, further studies are warranted to verify these findings. Here we examined the levels of SARS-CoV-2 antibodies in Japanese healthy volunteers who underwent BNT162b2 vaccine, to assess the humoral responses and side effects. Methods Forty-one healthy volunteers’ samples were used for the measurement of SARS-CoV-2 antibodies with chemiluminescent assays against the Receptor Binding Domain (RBD) of the virus. We also measured the side effects of the vaccination. Results Although the levels of IgM varied, all participants were seronegative for IgM and IgG before vaccination, and both IgM and IgG were significantly increased after the vaccinations. We further analyzed the humoral responses in relation to age, and found that the IgG levels for 14 days and 35 days, and IgM levels for 14 days after vaccination showed clear declining trends with age. Commonly reported side effects in the participants were sore arm/pain (90.0%) after the first dose, and generalized weakness/fatigue (70.0%), fever (57.5%), and sore arm/pain (90.0%) after the second dose. Conclusions BNT162b2 vaccination generates sufficient production of IgG especially after the second dose, though the response decreases age-dependently. The high frequencies of generalized weakness/fatigue, fever, and sore arm/pain were not negligible, especially after the second dose. This may be associated with the age characteristics of the population.


Author(s):  
Shaghayegh Rahdan ◽  
Seyed Alireza Razavi ◽  
Mahboobeh Nazari ◽  
Sorour Shojaeian ◽  
Fazel Shokri ◽  
...  

Background: Placenta-specific 1 (PLAC1) is one of the recently-discovered Cancer-Testis-Placenta (CTP) antigen with restricted normal tissue and ectopic expression in a wide range of cancer cells from different histological origins. The production of recombinant human PLAC1 has already been optimized; however, no study has been reported so far on the production and purification of mouse plac1. In this study, mouse plac1 expression and purification was optimized in a prokaryotic system and the effects of the generated proteins on inducing humoral responses in mice were investigated. Methods: A fusion protein containing full extracellular domain of mouse plac1, immunostimulatory peptides, tetanus toxin P2P30 and PADRE and KDEL3 signal (main plac1), and the same fragment without immunostimulatory peptides (control plac1) was produced. To optimize production and purification steps, different parameters including bacterial strain, cultivation temperature, cultivation time, IPTG concentration, culture medium, and also different buffers for purification of the recombinant proteins were tested. After confirming the identity of recombinant plac1 proteins with Western Blotting (WB) and ELISA assays, these proteins were subcutaneously injected in mice with Freund's adjuvant and the anti-plac1 antibody response was detected by ELISA. Results: The optimal expression level of main and control plac1 was obtained in BL21 (DE3) and TB culture medium in the presence of 0.25 mM IPTG after 24 hr of induction at 15°C. The buffer containing 2% sarkosyl produced higher yield and purity. Our results showed specific reactivity of anti-human recombinant plac1 polyclonal antibody with both main and control plac1 recombinant proteins in WB and ELISA analysis. Both proteins induced humoral responses in mice; however, anti-plac1  antibody titer was significantly higher in sera of mice immunized with main compared to control plac1. Conclusion: In this study, an optimized protocol for production and purification of mouse plac1 was reported and it was shown that insertion of immunostimulatory peptides in gene construct could efficiently enhance humoral immune responses against mouse plac1, which could potentially augment cellular immune responses against plac1 leading to more effective anti-cancer responses.


2022 ◽  
pp. 105405
Author(s):  
Atefeh Afchangi ◽  
Somayeh Jalilvand ◽  
Arash Arashkia ◽  
Tayebeh Latifi ◽  
Mohammad Farahmand ◽  
...  
Keyword(s):  

Author(s):  
Ourania S. Kotsiou ◽  
Dimitrios Papagiannis ◽  
Evangelos C. Fradelos ◽  
Dimitra I. Siachpazidou ◽  
Garifallia Perlepe ◽  
...  

Background: In this work we aimed to evaluate antibody-response longevity to SARS-CoV-2 infection and/or vaccination in one of the Greek communities that was worst hit by the pandemic, Deskati, five months after a previous serosurveillance and nine months after the pandemic wave initiation (October 2020). Methods: The SARS-CoV-2 IgG II Quant method (Architect, Abbott, IL, USA) was used for antibody testing. Results: A total of 69 subjects, who previously tested positive or negative for COVID-19 antibodies, participated in the study. We found that 48% of participants turned positive due to vaccination and 27% of participants were both previously infected and vaccinated. All previously infected participants retained antibodies to the virus, irrespective of their vaccination status. The antibody titers were significantly higher in previously infected participants that had been vaccinated than those who were unvaccinated and in those that had been previously hospitalized for COVID-19 than those with mild disease. Conclusions: Antibody responses to SARS-CoV-2 infection were maintained nine months after the pandemic. Vaccination alone had generated an immune response in almost half of the population. Higher antibody titers were found in the case of vaccination in previously infected subjects and especially in those with severe disease leading to hospitalization


Sign in / Sign up

Export Citation Format

Share Document