avalanche warning
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 4 ◽  
pp. 1-8
Author(s):  
Aurora Rapisarda ◽  
Andrea Marco Raffaele Pranzo

Abstract. During the last decades, the process of explaining life-threatening natural hazards to the public has become a major public issue from the point of view of effective prevention policies. The avalanche risk and the communication methods aimed at its forecasting and prevention constitute the focus of this paper. Among the strategies for an effective communication of environmental risks, cartography plays a pivotal role. It has proved to be essential not only for communication purposes, but also for the planning of prompt and efficient preventive interventions; in so doing, it contributes to the reduction of avalanche-caused damages and deaths. The paper investigates prevention and forecasting activities of the Meteomont Service of the Alpine Troops Command (COMTA) of Bolzano (capital city of the province of South Tyrol - North Italy), resulting in the daily publication of avalanche bulletins (Bollettini valanghe), which also include hazard maps. Specifically, the phases that contribute to the production of the avalanche bulletin and the embedded avalanche risk maps will be firstly examined; secondly, such maps will be analysed in order to assess their communicative potential for the purpose of a correct interpretation aimed at the effective prevention of snow-related risks in mountain areas. Possible improvement will be proposed on the basis of the experience of several avalanche warning services worldwide.


2021 ◽  
Author(s):  
Kathryn C. Fisher ◽  
Pascal Haegeli ◽  
Patrick Mair

Abstract. Recreationists are responsible for developing their own risk management plans for travelling in avalanche terrain. In order to provide guidance for recreationists on mitigating exposure to avalanche hazard, many avalanche warning services include explicit travel and terrain advice (TTA) statements in their daily avalanche bulletins where forecasters offer guidance about what specific terrain to avoid and what to favour under the existing hazard conditions. However, the use and effectiveness of this advice has never been tested to ensure it meets the needs of recreationists developing their risk management approach for backcountry winter travel. We conducted an online survey in Canada and the United States to determine which user groups are paying attention to the TTA in avalanche bulletins, what makes these statements useful, and if modifications to the phrasing of the statements would improve their usefulness for users. Our analysis reveals that the core audience of the TTA is users with introductory level avalanche awareness training who integrate slope-scale terrain considerations into their avalanche safety decisions. Using a series of ordinal mixed effect models, we show that reducing the jargon used in the advice helped users with no or only introductory level avalanche awareness training understand the advice significantly better and providing additional context for the advice made the advice more useful for them. These results provide avalanche warning services with critical perspectives and recommendations for improving their TTA so that they can better support recreationists who are at earlier stages of developing their avalanche risk management approach and therefore need the support the most.


2021 ◽  
Author(s):  
Svetlana Segarceanu ◽  
Trufin Dan Alexandru ◽  
George Valentin Iordache ◽  
Gabriel Petrescu ◽  
George Suciu

2021 ◽  
Author(s):  
Kathryn C. Fisher ◽  
Pascal Haegeli ◽  
Patrick Mair

Abstract. Avalanche warning services publish avalanche condition reports, often called avalanche bulletins, to help backcountry recreationists make informed risk management decisions about when and where to travel in avalanche terrain. To be successful, the information presented in bulletins must be properly understood and applied prior to entering avalanche terrain. However, few avalanche bulletin elements have been empirically tested for their efficacy in communicating hazard information. The objective of this study is to explicitly test the effectiveness of three different graphics representing the aspect and elevation of avalanche problems on users’ ability to apply the information. To address this question, we conducted an online survey that presented participants with one of three graphic renderings of avalanche problem information and asked them to rank a series of route options in order of their exposure to the described hazard. Following completion of route ranking tasks, users were presented with all three graphics and asked to rate how effective they thought the graphics were. Our analysis dataset included responses from 3,056 backcountry recreationists with a variety of backgrounds and avalanche safety training levels. Using a series of generalized linear mixed effects models, our analysis shows that a graphic format that combines the aspect and elevation information for each avalanche problem is the most effective graphic for helping users understand the avalanche hazard conditions because it resulted in higher success in picking the correct exposure ranking, faster completion times, and was rated by users to be the most effective. These results are consistent with existing research on the impact of graphics on cognitive load and can be applied by avalanche warning services to improve the communication of avalanche hazard to readers of their avalanche bulletins.


2021 ◽  
Vol 15 (2) ◽  
pp. 983-1004
Author(s):  
Elisabeth D. Hafner ◽  
Frank Techel ◽  
Silvan Leinss ◽  
Yves Bühler

Abstract. The spatial distribution and size of avalanches are essential parameters for avalanche warning, avalanche documentation, mitigation measure design and hazard zonation. Despite its importance, this information is incomplete today and only available for limited areas and limited time periods. Manual avalanche mapping from satellite imagery has recently been applied to reduce this gap achieving promising results. However, their reliability and completeness have not yet been verified satisfactorily. In our study we attempt a full validation of the completeness of visually detected and mapped avalanches from optical SPOT 6, Sentinel-2 and radar Sentinel-1 imagery. We examine manually mapped avalanches from two avalanche periods in 2018 and 2019 for an area of approximately 180 km2 around Davos, Switzerland, relying on ground- and helicopter-based photographs as ground truth. For the quality assessment, we investigate the probability of detection (POD) and the positive predictive value (PPV). Additionally, we relate our results to conditions which potentially influence avalanche detection in the satellite imagery. We statistically confirm the high potential of SPOT for comprehensive avalanche mapping for selected periods (POD = 0.74, PPV = 0.88) as well as the reliability of Sentinel-1 (POD = 0.27, PPV = 0.87) for which the POD is reduced because mainly larger avalanches are mapped. Furthermore, we found that Sentinel-2 is unsuitable for the mapping of most avalanches due to its spatial resolution (POD = 0.06, PPV = 0.81). Because we could apply the same reference avalanche events for all three satellite mappings, our validation results are robust and comparable. We demonstrate that satellite-based avalanche mapping has the potential to fill the existing avalanche documentation gap over large areas, making alpine regions safer.


2020 ◽  
Author(s):  
Elisabeth D. Hafner ◽  
Frank Techel ◽  
Silvan Leinss ◽  
Yves Bühler

Abstract. The spatial distribution and size of avalanches are essential parameters for avalanche warning, avalanche documentation, mitigation measure design and hazard zonation. Despite its importance, this information is incomplete today and only available for limited areas and limited time periods. Manual avalanche mapping from satellite imagery has recently been applied to reduce this gap achieving promising results. However, their reliability and completeness were not yet verified satisfactorily. In our study we attempt a full validation of the completeness of visually detected and mapped avalanches from optical SPOT-6, Sentinel-2 and radar Sentinel-1 imagery. We examine manually mapped avalanches from two avalanche periods in 2018 and 2019 for an area of approximately 180 km2 around Davos, Switzerland relying on ground- and helicopter-based photographs as ground truth. For the quality assessment, we investigate the Probability of Detection (POD) and the Positive Predictive Value (PPV). Additionally, we relate our results to conditions which potentially influence avalanche detection in the satellite imagery. We statistically confirm the high potential of SPOT for comprehensive avalanche mapping for selected periods (POD = 0.74, PPV = 0.88) as well as the reliability of Sentinel-1 for the mapping of larger avalanches (POD = 0.27, PPV = 0.87). Furthermore, we proof that Sentinel-2 is unsuitable for the mapping of most avalanches due to its spatial resolution (POD = 0.06, PPV = 0.81). Because we could apply the same reference avalanche events for all three satellite mappings, our validation results are robust and comparable. We demonstrate that satellite-based avalanche mapping has the potential to fill the existing avalanche documentation gap over large areas, making alpine regions safer.


2020 ◽  
Vol 18 (Sup6) ◽  
pp. S4-S4
Author(s):  
Michelle Clayton

Michelle Clayton, Chair of the British Liver Nurses' Association, considers the long-term consequences of the COVID-19 pandemic for liver health


SOLA ◽  
2020 ◽  
Vol 16 (0) ◽  
pp. 246-251
Author(s):  
Asami Komatsu ◽  
Kouichi Nishimura
Keyword(s):  

2019 ◽  
Vol 13 (12) ◽  
pp. 3225-3238 ◽  
Author(s):  
Yves Bühler ◽  
Elisabeth D. Hafner ◽  
Benjamin Zweifel ◽  
Mathias Zesiger ◽  
Holger Heisig

Abstract. Accurate and timely information on avalanche occurrence is key for avalanche warning, crisis management and avalanche documentation. Today such information is mainly available at isolated locations provided by observers in the field. The achieved reliability, considering accuracy, completeness and reliability of the reported avalanche events, is limited. In this study we present the spatially continuous mapping of a large avalanche period in January 2018 covering the majority of the Swiss Alps (12 500 km2). We tested different satellite sensors available for rapid mapping during the first avalanche period. Based on these experiences, we tasked SPOT6 and SPOT7 for data acquisition to cover the second, much larger avalanche period. We manually mapped the outlines of 18 737 individual avalanche events, applying image enhancement techniques to analyze regions in the shade as well as in brightly illuminated ones. The resulting dataset of mapped avalanche outlines, having unique completeness and reliability, is evaluated to produce maps of avalanche occurrence and avalanche size. We validated the mapping of the avalanche outlines using photographs acquired from helicopters just after the avalanche period. This study demonstrates the applicability of optical, very high spatial resolution satellite data to map an exceptional avalanche period with very high completeness, accuracy and reliability over a large region. The generated avalanche data are of great value in validating avalanche bulletins, in completing existing avalanche databases and for research applications by enabling meaningful statistics on important avalanche parameters.


2019 ◽  
Vol 11 (23) ◽  
pp. 2863 ◽  
Author(s):  
Markus Eckerstorfer ◽  
Hannah Vickers ◽  
Eirik Malnes ◽  
Jakob Grahn

Knowledge of the spatio-temporal occurrence of avalanche activity is critical for avalanche forecasting. We present a near-real time automatic avalanche monitoring system that outputs detected avalanche polygons within roughly 10 min after Sentinel-1 SAR data are download. Our avalanche detection algorithm has an average probability of detection (POD) of 67.2% with a false alarm rate (FAR) averaging 45.9, with a maximum POD of over 85% and a minimum FAR of 24.9% compared to manual detection of avalanches. The high variability in performance stems from the dynamic nature of snow in the Sentinel-1 data. After tuning parameters of the detection algorithm, we processed five years of Sentinel-1 images acquired over a 150 × 100 km large area in Northern Norway, with the best setup. Compared to a dataset of field-observed avalanches, 77.3% were manually detectable. Using these manual detections as benchmark, the avalanche detection algorithm achieved an accuracy of 79% with high POD in cases of medium to large wet snow avalanches. For the first time, we present a dataset of spatio-temporal avalanche activity over several winters from a large region. Currently, the Norwegian Avalanche Warning Service is using our processing system for pre-operational use in three regions in Norway.


Sign in / Sign up

Export Citation Format

Share Document