seismic response of buildings
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Abdallah Yacine Rahmani ◽  
Mohamed Badaoui ◽  
Nouredine Bourahla ◽  
Rita Bento

Abstract Pushover analysis technique is a key tool for the performance-based seismic design that has been largely adopted in the new generation of seismic codes. Therefore, more precise and reliable performance predictions are highly demanded. Improved upper-bound (IUB) pushover analysis is one of the advanced nonlinear static procedures (NSPs) that has been recently developed. This procedure estimates adequately the response of regular and tall buildings. In this study, IUB is extended to assess the seismic response of irregular buildings with setbacks. To this end, an adjustment of the IUB lateral load distribution is implemented by integrating a third mode of vibration to control the response of these complex buildings. Fifteen multi-storey steel frames with different types of setbacks including a reference structure are used to test the accuracy of the proposed procedure by comparing its results to those from other NSPs and the nonlinear time history analysis (NLHA). The findings show the superior capacity of the extended IUB in predicting the seismic response of buildings with different levels and types of setbacks.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 276
Author(s):  
Nisar Ali Khan ◽  
Giorgio Monti ◽  
Camillo Nuti ◽  
Marco Vailati

Infilled reinforced concrete (IRC) frames are a very common construction typology, not only in developing countries such as Pakistan but also in southern Europe and Western countries, due to their ease of construction and less technical skills required for the construction. Their performance during past earthquakes has been in some cases satisfactory and in other cases inadequate. Significant effort has been made among researchers to improve such performance, but few have highlighted the influence of construction materials used in the infill walls. In some building codes, infills are still considered as non-structural elements, both in the design of new buildings and, sometimes, in the assessment of existing buildings. This is mainly due to some difficulties in modeling their mechanical behavior and also the large variety of typologies, which are difficult to categorize. Some building codes, for example, Eurocode, already address the influence of infill walls in design, but there is still a lack of homogeneity among different codes. For example, the Pakistan building code (PBC) does not address infills, despite being a common construction technique in the country. Past earthquake survey records show that construction materials and infill types significantly affect the seismic response of buildings, thus highlighting the importance of investigating such parameters. This is the object of this work, where a numerical model for infill walls is introduced, which aims at predicting their failure mode, as a function of some essential parameters, such as the friction coefficient between mortar and brick surface and mortar strength, usually disregarded in previous models. A comprehensive case study is presented of a three-story IRC frame located in the city of Mirpur, Pakistan, hit by an earthquake of magnitude 5.9 on 24 September 2019. The results obtained from the numerical model show good agreement with the damage patterns observed in situ, thus highlighting the importance of correctly modeling the infill walls when seismically designing or assessing Pakistani buildings that make use of this technology.


Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 234
Author(s):  
Yeudy F. Vargas-Alzate ◽  
Jorge E. Hurtado

This paper focuses on the identification of high-efficiency intensity measures to predict the seismic response of buildings affected by near- and far-fault ground motion records. Near-fault ground motion has received special attention, as it tends to increase the expected damage to civil structures compared to that from ruptures originating further afield. In order to verify this tendency, the nonlinear dynamic response of 3D multi-degree-of-freedom models is estimated by using a subset of records whose distance to the epicenter is lower than 10 Km. In addition, to quantify how much the expected demand may increase because of the proximity to the fault, another subset of records, whose distance to the epicenter is in the range between 10 and 30 Km, has been analyzed. Then, spectral and energy-based intensity measures as well as those obtained from specific computations of the ground motion record are calculated and correlated to several engineering demand parameters. From these analyses, fragility curves are derived and compared for both subsets of records. It has been observed that the subset of records nearer to the fault tends to produce fragility functions with higher probabilities of exceedance than the ones derived for far-fault records. Results also show that the efficiency of the intensity measures is similar for both subsets of records, but it varies depending on the engineering demand parameter to be predicted.


Structures ◽  
2020 ◽  
Vol 27 ◽  
pp. 788-812 ◽  
Author(s):  
Emanuele Gandelli ◽  
Dario De Domenico ◽  
Paolo Dubini ◽  
Matteo Besio ◽  
Eleonora Bruschi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document