seismic shear
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 31)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
pp. 875529302110533
Author(s):  
Gabriel Rivard ◽  
Steeve Ambroise ◽  
Patrick Paultre

Recent numerical and experimental studies on reinforced concrete shear walls and coupled walls have shown shear forces greater than expected when the walls are subjected to earthquakes at an intensity level that does not exceed the design values. This amplification of shear forces is attributable to the effects of higher modes after the walls develop a plastic hinge at the base. These effects have been recently recognized in North American design codes for cantilever walls and is currently neglected in the design of ductile coupled walls. As part of the research program described in this article, a parametric study was carried out on coupled wall systems to identify the geometric and physical parameters having the greatest influence on the seismic shear amplification. Using the results of this parametric study, an extensive numerical study was conducted on classes of ductile coupled walls subjected to seismic excitation representative of Western and Eastern Canada. This extensive study led to the establishment of shear amplification prediction equations for use in building codes.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yufang Zhang ◽  
Hongyu Liu ◽  
Jian Li ◽  
Qidi Huang ◽  
Xianjie Ma ◽  
...  

The landslide at the entrance of a railway tunnel in the southwestern region is relatively large, especially due to earthquakes and other factors, which are prone to severe disasters and threaten the safety of the tunnel. Through the long-term monitoring test and numerical calculation analysis on-site, the mechanism of the influence of the earthquake-induced landslide on the characteristics of the tunnel’s force and deformation is studied. The research results show that the earthquake caused the landslide thrust to increase. Because of the existence of the supporting structure, the landslide thrust was consumed, and the remaining part resulted in the compression failure of the tunnel. During the seismic monitoring period, the stress loss of the antislide pile anchor cable was 3.73% and the stress of the second lining of the tunnel increased by 25%. Under the condition of extreme seismic, shear failure occurred at the vault, bottom, and waist of the right-line tunnel, and the tensile strength of the right-line tunnel reached 93.8% of the limit value. For the weak links of the tunnel structure, dense reinforcement planting and strengthening of concrete strength should be adopted to enhance the safety of the tunnel structure. While designing the supporting structure, the rock-socketing depth of the antislide piles and the number of antislide piles should be considered a priority. The impact of the antislide pile spacing is relatively small.


2021 ◽  
Author(s):  
◽  
Ernestynne Walsh

<p>Seismic shear waves emitted by earthquakes can be modelled as plane (transverse) waves. When entering an anisotropic medium they can be split into two orthogonal components moving at different speeds. This splitting occurs along an axis, the fast direction, that is determined by the ambient tectonic stress. Shear wave splitting is thus a commonly used tool for examining tectonic stress in the Earth’s interior. A common technique used to measure shear wave splitting is the Silver and Chan (1991) method. However, there is little literature assessing the robustness of this method, particularly for its use with local earthquakes, and the quality of results can vary. We present here a comprehensive analysis of the Silver and Chan method comprising theoretical derivations and statistical tests of the assumptions behind this method. We then produce an automated grading system calibrated against an expert manual grader using multiple linear regression. We find that there are errors in the derivation of certain equations in the Silver and Chan method and that it produces biased estimates of the errors. Further, the assumptions used to generate the errors do not hold. However, for high quality results (earthquake events where the signal is strong and the earthquake geometry is optimal), the standard errors are representative of the spread in the parameter estimates. Also, we find that our automated grading method produces grades that match the manual grades, and is able to identify mistakes in the manual grades by detecting substantial inconsistencies with the automated grades.</p>


2021 ◽  
Author(s):  
◽  
Ernestynne Walsh

<p>Seismic shear waves emitted by earthquakes can be modelled as plane (transverse) waves. When entering an anisotropic medium they can be split into two orthogonal components moving at different speeds. This splitting occurs along an axis, the fast direction, that is determined by the ambient tectonic stress. Shear wave splitting is thus a commonly used tool for examining tectonic stress in the Earth’s interior. A common technique used to measure shear wave splitting is the Silver and Chan (1991) method. However, there is little literature assessing the robustness of this method, particularly for its use with local earthquakes, and the quality of results can vary. We present here a comprehensive analysis of the Silver and Chan method comprising theoretical derivations and statistical tests of the assumptions behind this method. We then produce an automated grading system calibrated against an expert manual grader using multiple linear regression. We find that there are errors in the derivation of certain equations in the Silver and Chan method and that it produces biased estimates of the errors. Further, the assumptions used to generate the errors do not hold. However, for high quality results (earthquake events where the signal is strong and the earthquake geometry is optimal), the standard errors are representative of the spread in the parameter estimates. Also, we find that our automated grading method produces grades that match the manual grades, and is able to identify mistakes in the manual grades by detecting substantial inconsistencies with the automated grades.</p>


Author(s):  
И.Д. Музаев ◽  
К.С. Харебов ◽  
Н.И. Музаев

В статье впервые в мире разработаны теоретические положения сдвиговых сейсмических колебаний ледникового массива. Актуальность представленных научных разработок в приложении к инженерной сейсмологии и гляциологии обусловлено тем, что в недавнее время в различных регионах нашей планеты имели место внезапные срывы с гор грандиозных масс льда, что приводило к образованию мощных гляциальных селевых потоков. Эти потоки уничтожали населенные пункты и народохозяйственные объекты с многочисленными жертвами. Все мы помним катастрофический сход ледника Колка в Геналдонском ущелье в 2002г., унесшего 125 человеческих жизней. Причиной срыва ледяных масс со своих подстилающих поверхностей примерзаний является динамическое воздействие, в качестве которого мы рассматриваем землетрясение. Цель исследования. На основе современных научных методов механики сплошных сред проведение механико-математического компьютерного моделирования колебательного процесса в ледниковом массиве, когда колебание спровоцировано гармонической сейсмической волной, упавшей на подстилающую поверхность примерзания массива. В рамках выполненного моделирования содержится постановка и решение соответствующей начально-краевой задачи. Начальными данными являются как физико-механические характеристики льда, его плотность, модуль сдвига, коэффициент внутреннего (вязкого) сопротивления, так и геометрические размеры и непризматическая конфигурация массива. Искомыми величинами в поставленной начально-краевой задаче являются перемещения и напряжения, как в самом теле массива, так и на подстилающей поверхности примерзания. Методы исследования. Составленная модель представляет собой начально-краевую задачу математической физики для дифференциального уравнения гиперболического типа, в котором один коэффициент является комплексной величиной, названной комплексным модулем сдвига согласно с гипотезой Е.С. Сорокина, а другой коэффициент является переменной величиной, зависящей от пространственной координаты. Эти два особых фактора создают трудности в аналитическом способе решения начально-краевых задач. В представленной работе найден путь решения поставленной задачи в частном случае – при экспоненциальной зависимости переменного коэффициента от пространственной координаты. Результаты работы. Получена совокупность расчётных формул для вычисления напряжений и деформаций в ледниковом массиве. Доказано утверждение о том, что низкобалльная сейсмическая околорезонансная волна может отколоть ледниковый массив от подстилающей поверхности примерзания, что приведет к образованию гляциального селевого потока Theoretical studies of seismic oscillations of the glacial massif are an urgent task in the field of engineering seismology and glaciology. This statement is confirmed if we recall the case of the sudden catastrophic collapse of the Kolka glacier in 2002, which claimed the lives of 125 human lives. Aim. Conducting a mechanical and mathematical simulation of the oscillatory process in a glacial massif, when the oscillation is triggered by a harmonic seismic wave that has fallen on the underlying surface of the frozen massif. Formulation and solution of the initial boundary value problem for calculating stresses and deformations in a glacial massif. Methods. The compiled model represents an initial boundary value problem of mathematical physics for a hyperbolic differential equation, in which one coefficient is a complex quantity called the complex shift modulus according to the hypothesis of E.S. Sorokin, and the other coefficient is a variable value depending on the spatial coordinate. These two special factors create difficulties in the analytical way of solving initial-boundary value problems. In the present paper, we find a way to solve the problem in the special case - with an exponential dependence of the variable coefficient on the spatial coordinate. Results. A set of calculation formulas for calculating stresses and deformations in the glacial massif is obtained. It is proved that a low-point seismic near-resonant wave can break off the glacial massif from the underlying freezing surface, which will lead to the formation of a glacial mudflow.


Solid Earth ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1851-1864
Author(s):  
Fabian Limberger ◽  
Michael Lindenfeld ◽  
Hagen Deckert ◽  
Georg Rümpker

Abstract. In this study, we determine spectral characteristics and amplitude decays of wind turbine induced seismic signals in the far field of a wind farm (WF) close to Uettingen, Germany. Average power spectral densities (PSDs) are calculated from 10 min time segments extracted from (up to) 6 months of continuous recordings at 19 seismic stations, positioned along an 8 km profile starting from the WF. We identify seven distinct PSD peaks in the frequency range between 1 and 8 Hz that can be observed to at least 4 km distance; lower-frequency peaks are detectable up to the end of the profile. At distances between 300 m and 4 km the PSD amplitude decay can be described by a power law with exponent b. The measured b values exhibit a linear frequency dependence and range from b=0.39 at 1.14 Hz to b=3.93 at 7.6 Hz. In a second step, the seismic radiation and amplitude decays are modeled using an analytical approach that approximates the surface wave field. Since we observe temporally varying phase differences between seismograms recorded directly at the base of the individual wind turbines (WTs), source signal phase information is included in the modeling approach. We show that phase differences between source signals have significant effects on the seismic radiation pattern and amplitude decays. Therefore, we develop a phase shift elimination method to handle the challenge of choosing representative source characteristics as an input for the modeling. To optimize the fitting of modeled and observed amplitude decay curves, we perform a grid search to constrain the two model parameters, i.e., the seismic shear wave velocity and quality factor. The comparison of modeled and observed amplitude decays for the seven prominent frequencies shows very good agreement and allows the constraint of shear velocities and quality factors for a two-layer model of the subsurface. The approach is generalized to predict amplitude decays and radiation patterns for WFs of arbitrary geometry.


2021 ◽  
Vol 4 (3) ◽  
pp. 54-60
Author(s):  
S. Kuznecov ◽  
A. Al' Shemali

the problem of protecting buildings and structures from vibrations of natural and artificial nature is im-portant for modern construction. One of such modern methods of protection is seismic pads. The purpose of this work was to study the effect of adding a layer of granular metamaterial under a slab foundation on the vibration of a building under the influence of seismic shear waves (S-waves). To achieve this objective, the finite element method (FEM) was used in combination with Cam-Clay models. The FE model consists of a ten-story superstructure rested on the slab foundation, under which there is a layer of granular metamateri-als. 16 models were created taking into account changes in the values of these parameters (pad thickness; density; cohesion; critical state strength parameter (M); Young's modulus-Poisson's ratio). The dynamic analysis performed using the software package Abaqus/CAE showed the effectiveness of granular met-amaterials in their ability to dissipate seismic energy and significantly reduce vibration transmitted from the ground to the building.


2021 ◽  
Vol 44 (6) ◽  
pp. 20200240
Author(s):  
Timothy D. Stark
Keyword(s):  

2021 ◽  
Vol 4 (2) ◽  
pp. 5-11
Author(s):  
A.A. Al' Shemali A.A.

Problem of developing methods for protecting buildings and structures from the vibrations transmitted to them from the soil under the action of seismic effects is extremely important to date. One of these modern methods is seismic pads. The purpose of this work was to study the effectiveness of adding a pad of granu-lar metamaterials under the foundation of the building to decrease influence of seismic shear waves. The Finite Element Analysis of Mohr-Coulomb models was used to achieve this goal. The FE model consists of a ten-story superstructure rested on the slab foundation, under which there is a layer of granular metamateri-als. The values of five variables that affect the mechanical properties of these metamaterials were analyzed (density – cohesion – internal friction angle – Young's modulus – Poisson's ratio) for two different pad thicknesses. The dynamic analysis performed using the software package Abaqus/CAE showed the effec-tiveness of the granular metamaterials in their ability to significantly reduce magnitudes of displacements, velocities and accelerations in the building compared to the same values in the absence of these metamateri-als. The analysis also revealed that among the studied variables, the cohesion is the parameter most influenc-ing the effectiveness of metamaterials in their ability to dissipate seismic waves, while no significant effect was observed for the other parameters


Sign in / Sign up

Export Citation Format

Share Document