gcmc simulations
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 24)

H-INDEX

11
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Jaehoon Cha ◽  
Seongbin Ga ◽  
Seung-Joon LEE ◽  
Soomyung Nam ◽  
Youn-Sang Bae ◽  
...  

<p>In this work, we proposed multi-scale screening, which employs both molecular and process-level models, to identify high-performing MOFs for energy-efficient separation of SF$_6$ and N$_2$ mixture. Grand canonical Monte Carlo (GCMC) simulations were combined with ideal adsorption process simulation to computationally screen 14,000 metal-organic frameworks (MOFs) for adsorptive separation of SF$_6$ \/ N$_2$. More than 150 high-performing MOFs were identified based on the GCMC simulations at the pressure and vacuum swing conditions, and subsequently evaluated using the ideal adsorption process simulation. High-performing MOFs selected for the VSA conditions are able to achieve the 90 \% target purity level of SF$_6$, but none of the selected MOFs for PSA conditions could. Cascade PSA configuration was proposed and adopted to improve the purity level of the separated SF$_6$. Cascade PSA configuration was also adopted to improve the purity. In the pump efficiency scenarios of 80, 20, and 10 \%, the VSA and cascade PSA cases were compared. Top-performing MOFs identified from the multi-scale computational approach were found to be able to produce 90\% purity SF$_6$ with 0.10 - 0.4 and 0.5 - 1.4 MJ per kg of SF$_6$ for VSA and PSA, respectively. We used experimental isotherm data available in the literature to evaluate the process-level performance of top-performing materials (HKUST-1, UiO-67) along with other materials (MIL-100(Fe), UiO-66, and zeolite-13X) with experimental isotherm data. We found that there is a reasonable agreement between using simulated and experimental isotherm data.<br></p>


2021 ◽  
Author(s):  
Jaehoon Cha ◽  
Seongbin Ga ◽  
Seung-Joon LEE ◽  
Soomyung Nam ◽  
Youn-Sang Bae ◽  
...  

<p> In this work, we proposed multi-scale screening, which employs both molecular and process-level models, to identify high-performing MOFs for energy-efficient separation of SF6 from SF<sub>6</sub> and N<sub>2</sub> mixture. Grand canonical Monte Carlo (GCMC) simulations were combined with ideal adsorption process simulation to computationally screen 14,000 metal-organic frameworks (MOFs) for adsorptive separation of SF6/N<sub>2</sub>. More than 150 high-performing MOFs were identified based on the results from GCMC simulations at the pressure and vacuum swing conditions, and subsequently evaluated using the ideal adsorption process simulation. High-performing MOFs selected for the VSA conditions are able to achieve the 90% target purity level of SF6 but none of the selected MOFs for PSA conditions could. Cascade PSA configuration was proposed and adopted to improve the purity level of the separated SF6. Cascade PSA configuration was also adopted to improve the purity. In the pump efficiency scenarios of 80, 20, and 10%, the VSA and cascade PSA cases were compared, which concluded 10% scenario prefers the PSA case whereas the VSA case is favored in the others. Top-performing MOFs identified from the multi-scale computational approach were found to be able to produce 90% purity SF<sub>6</sub> with 0.10 - 0.4 and 0.5 - 1.4 MJ per kg of SF6 for VSA and PSA, respectively.</p>


2021 ◽  
Author(s):  
Jaehoon Cha ◽  
Seongbin Ga ◽  
Seung-Joon LEE ◽  
Soomyung Nam ◽  
Youn-Sang Bae ◽  
...  

<p> In this work, we proposed multi-scale screening, which employs both molecular and process-level models, to identify high-performing MOFs for energy-efficient separation of SF$_6$ from SF$_6$ and N$_2$ mixture. Grand canonical Monte Carlo (GCMC) simulations were combined with ideal adsorption process simulation to computationally screen 14,000 metal-organic frameworks (MOFs) for adsorptive separation of SF$_6$ \/ N$_2$. More than 150 high-performing MOFs were identified based on the results from GCMC simulations at the pressure and vacuum swing conditions, and subsequently evaluated using the ideal adsorption process simulation. High-performing MOFs selected for the VSA conditions are able to achieve the 90 \% target purity level of SF$_6$ but none of the selected MOFs for PSA conditions could. Cascade PSA configuration was proposed and adopted to improve the purity level of the separated SF$_6$. Cascade PSA configuration was also adopted to improve the purity. In the pump efficiency scenarios of 80, 20, and 10 \%, the VSA and cascade PSA cases were compared, which concluded 10 \% scenario prefers the PSA case whereas the VSA case is favored in the others. Top-performing MOFs identified from the multi-scale computational approach were found to be able to produce 90\% purity SF$_6$ with 0.10 - 0.4 and 0.5 - 1.4 MJ per kg of SF$_6$ for VSA and PSA, respectively.<br></p>


2021 ◽  
Author(s):  
Jaehoon Cha ◽  
Seongbin Ga ◽  
Seung-Joon LEE ◽  
Soomyung Nam ◽  
Youn-Sang Bae ◽  
...  

<p> In this work, we proposed multi-scale screening, which employs both molecular and process-level models, to identify high-performing MOFs for energy-efficient separation of SF$_6$ from SF$_6$ and N$_2$ mixture. Grand canonical Monte Carlo (GCMC) simulations were combined with ideal adsorption process simulation to computationally screen 14,000 metal-organic frameworks (MOFs) for adsorptive separation of SF$_6$ \/ N$_2$. More than 150 high-performing MOFs were identified based on the results from GCMC simulations at the pressure and vacuum swing conditions, and subsequently evaluated using the ideal adsorption process simulation. High-performing MOFs selected for the VSA conditions are able to achieve the 90 \% target purity level of SF$_6$ but none of the selected MOFs for PSA conditions could. Cascade PSA configuration was proposed and adopted to improve the purity level of the separated SF$_6$. Cascade PSA configuration was also adopted to improve the purity. In the pump efficiency scenarios of 80, 20, and 10 \%, the VSA and cascade PSA cases were compared, which concluded 10 \% scenario prefers the PSA case whereas the VSA case is favored in the others. Top-performing MOFs identified from the multi-scale computational approach were found to be able to produce 90\% purity SF$_6$ with 0.10 - 0.4 and 0.5 - 1.4 MJ per kg of SF$_6$ for VSA and PSA, respectively.<br></p>


2021 ◽  
Author(s):  
Xiu-Yuan Li ◽  
Wang Ying-Bo ◽  
Song Yan ◽  
Xiang Dan ◽  
Chaozheng He

Abstract A new porous metal-organic framework, [Pb5(Ac)7(nIm)3]n (1), has been successfully synthesized by employing 2-nitroimidazole ligand and Pb2+ ion. 1 contains novel the ribbon-shaped Pb-O SBU and reveals a 2D porous framework with a 1D tubular channel. Moreover, 1 shows moderate adsorption uptake towards CO2 and luminescence properties from intraligand charge transfer. We further confirmed nitro group and metal ion are important adsorption sites by GCMC simulations, and the electronic structures of 1 was investigated.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2274
Author(s):  
Siddharth Gautam ◽  
David Cole

Metal-Organic Frameworks (MOF) have been identified as highly efficient nanoporous adsorbents for CO2 storage. In particular, Mg-MOF-74 has been shown to promise exceptionally high CO2 sorption. Although several studies have reported adsorption isotherms of CO2 in Mg-MOF-74, the effect of inter-crystalline spacing in Mg-MOF-74 on the sorption of CO2 has not been addressed. These effects have been shown to be profound for a quadrupolar molecule like CO2 in the case of silicalite (Phys. Chem. Chem. Phys. 22 (2020) 13951). Here, we report the effects of inter-crystalline spacing on the adsorption of CO2 in Mg-MOF-74, studied using grand canonical Monte Carlo (GCMC) simulations. The inter-crystalline spacing is found to enhance adsorption at the crystallite surfaces. Larger inter-crystalline spacing up to twice the kinetic diameter of CO2 results in higher adsorption and larger crystallite sizes suppress adsorption. Magnitudes of the inter-crystalline space relative to the kinetic diameter of the adsorbed fluid and the surface to volume ratio of the adsorbent crystallites are found to be important factors determining the adsorption amounts. The results of this study suggest that the ideal Mg-MOF-74 sample for CO2 storage applications should have smaller crystallites separated from each other with an inter-crystalline space of approximately twice the kinetic diameter of CO2.


2020 ◽  
Vol 247 ◽  
pp. 116981 ◽  
Author(s):  
Minoo Mosadegh ◽  
Farid Amirkhani ◽  
Hossein Riasat Harami ◽  
Morteza Asghari ◽  
Mohammad Javad Parnian

Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 742
Author(s):  
Zijian Song ◽  
Huanchun Cai ◽  
Qingyang Liu ◽  
Xing Liu ◽  
Qi Pu ◽  
...  

Corrosion inhibitors are one of the most effective anticorrosion techniques in reinforced concrete structures. Molecule dynamics (MD) was usually utilized to simulate the interaction between the inhibitor molecules and the surface of Fe to evaluate the inhibition effect, ignoring the influence of cement hydration products. In this paper, the adsorption characteristics of five types of common alkanol-amine inhibitors on C-S-H gel in the alkaline liquid environment were simulated via the MD and the grand canonical Monte Carlo (GCMC) methods. It is found that, in the MD system, the liquid phase environment had a certain impact on the adsorption configuration of compounds. According to the analysis of the energy, the binding ability of MEA on the surface of the C-S-H gel was the strongest. In the GCMC system, the adsorption of MEA was the largest at the same temperature. Furthermore, for the competitive adsorption in the GCMC system, the adsorption characteristics of the inhibitors on the C-S-H gel were to follow the order: MEA>DEA>TEA>NDE>DETA. Both MD and GCMC simulations confirmed that the C-S-H gel would adsorb the organic inhibitors to a different extent, which might have a considerable influence on the organic inhibitors to exert their inhibition effects.


Sign in / Sign up

Export Citation Format

Share Document