binary segmentation
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 57)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Vol 12 (2) ◽  
pp. 824
Author(s):  
Kamran Javed ◽  
Nizam Ud Din ◽  
Ghulam Hussain ◽  
Tahir Farooq

Face photographs taken on a bright sunny day or in floodlight contain unnecessary shadows of objects on the face. Most previous works deal with removing shadow from scene images and struggle with doing so for facial images. Faces have a complex semantic structure, due to which shadow removal is challenging. The aim of this research is to remove the shadow of an object in facial images. We propose a novel generative adversarial network (GAN) based image-to-image translation approach for shadow removal in face images. The first stage of our model automatically produces a binary segmentation mask for the shadow region. Then, the second stage, which is a GAN-based network, removes the object shadow and synthesizes the effected region. The generator network of our GAN has two parallel encoders—one is standard convolution path and the other is a partial convolution. We find that this combination in the generator results not only in learning an incorporated semantic structure but also in disentangling visual discrepancies problems under the shadow area. In addition to GAN loss, we exploit low level L1, structural level SSIM and perceptual loss from a pre-trained loss network for better texture and perceptual quality, respectively. Since there is no paired dataset for the shadow removal problem, we created a synthetic shadow dataset for training our network in a supervised manner. The proposed approach effectively removes shadows from real and synthetic test samples, while retaining complex facial semantics. Experimental evaluations consistently show the advantages of the proposed method over several representative state-of-the-art approaches.


2022 ◽  
Author(s):  
Bangyu Li

Abstract Background: Land-use classification schemes typically address both land use and land cover. Vectorized data extracted from farm parcel segmentation provides important cadastral data for the formulation and management of climate change policies. It also provides important basic data for research on pest control in large areas, crop yield forecasts, and crop varieties classification. It can also be used for the assessment of compensation for damages related to extreme weather events by the agricultural insurance department. Firstly, we investigate the effectiveness of an automated image segmentation method based on TransUNet architecture to enable that automate the task of farm parcel delineation that originally relied on high labor costs. Then, post-processing by vectoring binary segmentation image, which the area and regularity parameter to adjust the accuracy of segmentation, can get a more optimized image segmentation result.Results: The results on the existing data show that the automatic segmentation system we proposed is a method that can effectively divide various types of agricultural land. The system was trained and evaluated using 94780 images. The performance parameters obtained showed that the accuracy rate reached 83.31%, the recall rate reached 82.13%, the F1-S rate was 80.37%, the total accuracy rate was 82.23%, and Iou was 80.39%. At the same times, without losing too much accuracy, we train and test the model with 3m resolution image, which has the advantage of processing speed than 0.8m resolution. Therefore, our proposed method can be effectively applied to the task of extraction of agricultural land, which is better and more efficient than most manual annotations.Conclusions: We have demonstrated the effectiveness of strategy using a TransUNet architecture and postprocessing by vectoring binary segmentation for farm parcel extraction in high remote sensing images. The success of our approach is also a demonstration of feasibility of the deep learning to participate in and improve agricultural production activities, which is important for achieving scientific management of agricultural production.


2021 ◽  
Vol 15 ◽  
Author(s):  
Florian Kofler ◽  
Ivan Ezhov ◽  
Lucas Fidon ◽  
Carolin M. Pirkl ◽  
Johannes C. Paetzold ◽  
...  

A multitude of image-based machine learning segmentation and classification algorithms has recently been proposed, offering diagnostic decision support for the identification and characterization of glioma, Covid-19 and many other diseases. Even though these algorithms often outperform human experts in segmentation tasks, their limited reliability, and in particular the inability to detect failure cases, has hindered translation into clinical practice. To address this major shortcoming, we propose an unsupervised quality estimation method for segmentation ensembles. Our primitive solution examines discord in binary segmentation maps to automatically flag segmentation results that are particularly error-prone and therefore require special assessment by human readers. We validate our method both on segmentation of brain glioma in multi-modal magnetic resonance - and of lung lesions in computer tomography images. Additionally, our method provides an adaptive prioritization mechanism to maximize efficacy in use of human expert time by enabling radiologists to focus on the most difficult, yet important cases while maintaining full diagnostic autonomy. Our method offers an intuitive and reliable uncertainty estimation from segmentation ensembles and thereby closes an important gap toward successful translation of automatic segmentation into clinical routine.


2021 ◽  
Vol 14 (1) ◽  
pp. 51
Author(s):  
Lianchong Zhang ◽  
Junshi Xia

Multiple source satellite datasets, including the Gaofen (GF) series and Zhuhai-1 hyperspectral, are provided to detect and monitor the floods. Considering the complexity of land cover changes within the flooded areas and the different characteristics of the multi-source remote sensing dataset, we proposed a new coarse-to-fine framework for detecting floods at a large scale. Firstly, the coarse results of the water body were generated by the binary segmentation of GF-3 SAR, the water indexes of GF-1/6 multispectral, and Zhuhai-1 hyperspectral images. Secondly, the fine results were achieved by the deep neural networks with noisy-label learning. More specifically, the Unet with the T-revision is adopted as the noisy label learning method. The results demonstrated the reliability and accuracy of water mapping retrieved by the noisy learning method. Finally, the differences in flooding patterns in different regions were also revealed. We presented examples of Poyang Lake to show the results of our framework. The rapid and robust flood monitoring method proposed is of great practical significance to the dynamic monitoring of flood situations and the quantitative assessment of flood disasters based on multiple Chinese satellite datasets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Roberto Morelli ◽  
Luca Clissa ◽  
Roberto Amici ◽  
Matteo Cerri ◽  
Timna Hitrec ◽  
...  

AbstractCounting cells in fluorescent microscopy is a tedious, time-consuming task that researchers have to accomplish to assess the effects of different experimental conditions on biological structures of interest. Although such objects are generally easy to identify, the process of manually annotating cells is sometimes subject to fatigue errors and suffers from arbitrariness due to the operator’s interpretation of the borderline cases. We propose a Deep Learning approach that exploits a fully-convolutional network in a binary segmentation fashion to localize the objects of interest. Counts are then retrieved as the number of detected items. Specifically, we introduce a Unet-like architecture, cell ResUnet (c-ResUnet), and compare its performance against 3 similar architectures. In addition, we evaluate through ablation studies the impact of two design choices, (i) artifacts oversampling and (ii) weight maps that penalize the errors on cells boundaries increasingly with overcrowding. In summary, the c-ResUnet outperforms the competitors with respect to both detection and counting metrics (respectively, $$F_1$$ F 1 score = 0.81 and MAE = 3.09). Also, the introduction of weight maps contribute to enhance performances, especially in presence of clumping cells, artifacts and confounding biological structures. Posterior qualitative assessment by domain experts corroborates previous results, suggesting human-level performance inasmuch even erroneous predictions seem to fall within the limits of operator interpretation. Finally, we release the pre-trained model and the annotated dataset to foster research in this and related fields.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1098
Author(s):  
Michael Henke ◽  
Kerstin Neumann ◽  
Thomas Altmann ◽  
Evgeny Gladilin

Background. Efficient analysis of large image data produced in greenhouse phenotyping experiments is often challenged by a large variability of optical plant and background appearance which requires advanced classification model methods and reliable ground truth data for their training. In the absence of appropriate computational tools, generation of ground truth data has to be performed manually, which represents a time-consuming task. Methods. Here, we present a efficient GUI-based software solution which reduces the task of plant image segmentation to manual annotation of a small number of image regions automatically pre-segmented using k-means clustering of Eigen-colors (kmSeg). Results. Our experimental results show that in contrast to other supervised clustering techniques k-means enables a computationally efficient pre-segmentation of large plant images in their original resolution. Thereby, the binary segmentation of plant images in fore- and background regions is performed within a few minutes with the average accuracy of 96–99% validated by a direct comparison with ground truth data. Conclusions. Primarily developed for efficient ground truth segmentation and phenotyping of greenhouse-grown plants, the kmSeg tool can be applied for efficient labeling and quantitative analysis of arbitrary images exhibiting distinctive differences between colors of fore- and background structures.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258463
Author(s):  
Yongning Zou ◽  
Gongjie Yao ◽  
Jue Wang

In this paper, we propose a framework for CT image segmentation of oil rock core. According to the characteristics of CT image of oil rock core, the existing level set segmentation algorithm is improved. Firstly, an algorithm of Chan-Vese (C-V) model is carried out to segment rock core from image background. Secondly the gray level of image background region is replaced by the average gray level of rock core, so that image background does not affect the binary segmentation. Next, median filtering processing is carried out. Finally, an algorithm of local binary fitting (LBF) model is executed to obtain the crack region. The proposed algorithm has been applied to oil rock core CT images with promising results.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 2038
Author(s):  
Zhen Tao ◽  
Shiwei Ren ◽  
Yueting Shi ◽  
Xiaohua Wang ◽  
Weijiang Wang

Railway transportation has always occupied an important position in daily life and social progress. In recent years, computer vision has made promising breakthroughs in intelligent transportation, providing new ideas for detecting rail lines. Yet the majority of rail line detection algorithms use traditional image processing to extract features, and their detection accuracy and instantaneity remain to be improved. This paper goes beyond the aforementioned limitations and proposes a rail line detection algorithm based on deep learning. First, an accurate and lightweight RailNet is designed, which takes full advantage of the powerful advanced semantic information extraction capabilities of deep convolutional neural networks to obtain high-level features of rail lines. The Segmentation Soul (SS) module is creatively added to the RailNet structure, which improves segmentation performance without any additional inference time. The Depth Wise Convolution (DWconv) is introduced in the RailNet to reduce the number of network parameters and eventually ensure real-time detection. Afterward, according to the binary segmentation maps of RailNet output, we propose the rail line fitting algorithm based on sliding window detection and apply the inverse perspective transformation. Thus the polynomial functions and curvature of the rail lines are calculated, and rail lines are identified in the original images. Furthermore, we collect a real-world rail lines dataset, named RAWRail. The proposed algorithm has been fully validated on the RAWRail dataset, running at 74 FPS, and the accuracy reaches 98.6%, which is superior to the current rail line detection algorithms and shows powerful potential in real applications.


Sign in / Sign up

Export Citation Format

Share Document