apoptosis pathways
Recently Published Documents


TOTAL DOCUMENTS

408
(FIVE YEARS 152)

H-INDEX

50
(FIVE YEARS 8)

Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 55
Author(s):  
Minghui Jin ◽  
Yinxue Shan ◽  
Yan Peng ◽  
Ping Wang ◽  
Qi Li ◽  
...  

The insecticidal Vip3 proteins, secreted by Bacillus thuringiensis (Bt) during its vegetative growth phase, are currently used in Bt crops to control insect pests, and are genetically distinct from known insecticidal Cry proteins. Compared with Cry toxins, the mechanisms of Vip3 toxins are still poorly understood. Here, the responses of Spodoptera frugiperda larvae after Vip3Aa challenge are characterized. Using an integrative analysis of transcriptomics and proteomics, we found that Vip3Aa has enormous implications for various pathways. The downregulated genes and proteins were mainly enriched in metabolic pathways, including the insect hormone synthesis pathway, whereas the upregulated genes and proteins were mainly involved in the caspase-mediated apoptosis pathway, along with the MAPK signaling and endocytosis pathways. Moreover, we also identified some important candidate genes involved in apoptosis and MAPKs. The present study shows that exposure of S. frugiperda larvae to Vip3Aa activates apoptosis pathways, leading to cell death. The results will promote our understanding of the host response process to the Vip3Aa, and help us to better understand the mode of action of Vip3A toxins.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Deivendran Rengaraj ◽  
Sohyoung Won ◽  
Kyung Min Jung ◽  
Seung Je Woo ◽  
Haerang Lee ◽  
...  

AbstractDNA is susceptible to damage by various sources. When the DNA is damaged, the cell repairs the damage through an appropriate DNA repair pathway. When the cell fails to repair DNA damage, apoptosis is initiated. Although several genes are involved in five major DNA repair pathways and two major apoptosis pathways, a comprehensive understanding of those gene expression is not well-understood in chicken tissues. We performed whole-transcriptome sequencing (WTS) analysis in the chicken embryonic fibroblasts (CEFs), stage X blastoderms, and primordial germ cells (PGCs) to uncover this deficiency. Stage X blastoderms mostly consist of undifferentiated progenitor (pluripotent) cells that have the potency to differentiate into all cell types. PGCs are also undifferentiated progenitor cells that later differentiate into male and female germ cells. CEFs are differentiated and abundant somatic cells. Through WTS analysis, we identified that the DNA repair pathway genes were expressed more highly in blastoderms and high in PGCs than CEFs. Besides, the apoptosis pathway genes were expressed low in blastoderms and PGCs than CEFs. We have also examined the WTS-based expression profiling of candidate pluripotency regulating genes due to the conserved properties of blastoderms and PGCs. In the results, a limited number of pluripotency genes, especially the core transcriptional network, were detected higher in both blastoderms and PGCs than CEFs. Next, we treated the CEFs, blastoderm cells, and PGCs with hydrogen peroxide (H2O2) for 1 h to induce DNA damage. Then, the H2O2 treated cells were incubated in fresh media for 3–12 h to observe DNA repair. Subsequent analyses in treated cells found that blastoderm cells and PGCs were more likely to undergo apoptosis along with the loss of pluripotency and less likely to undergo DNA repair, contrasting with CEFs. These properties of blastoderms and PGCs should be necessary to preserve genome stability during the development of early embryos and germ cells, respectively.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Joyce Ikedife ◽  
Jianlin He ◽  
Yufeng Wei

AbstractPhosphoprotein enriched in astrocytes, 15 kDa (PEA-15) is a death-effector domain (DED) containing protein involved in regulating mitogen-activated protein kinase and apoptosis pathways. In this molecular dynamics study, we examined how phosphorylation of the PEA-15 C-terminal tail residues, Ser-104 and Ser-116, allosterically mediates conformational changes of the DED and alters the binding specificity from extracellular-regulated kinase (ERK) to Fas-associated death domain (FADD) protein. We delineated that the binding interfaces between the unphosphorylated PEA-15 and ERK2 and between the doubly phosphorylated PEA-15 and FADD are similarly composed of a scaffold that includes both the DED and the C-terminal tail residues of PEA-15. While the unphosphorylated serine residues do not directly interact with ERK2, the phosphorylated Ser-116 engages in strong electrostatic interactions with arginine residues on FADD DED. Upon PEA-15 binding, FADD repositions its death domain (DD) relative to the DED, an essential conformational change to allow the death-inducing signaling complex (DISC) assembly.


Author(s):  
Camille N. Zenón-Meléndez ◽  
Kelvin Carrasquillo Carrión ◽  
Yadira Cantres Rosario ◽  
Abiel Roche Lima ◽  
Loyda M. Meléndez

2021 ◽  
Author(s):  
Chase P Kelley ◽  
Maja C Haerle ◽  
Eric T Wang

Cas13 is a unique family of CRISPR endonucleases exhibiting programmable binding and cleavage of RNAs and is a strong candidate for eukaryotic RNA knockdown in the laboratory and the clinic. However, sequence-specific binding of Cas13 to the target RNA unleashes non-specific bystander RNA cleavage, or collateral activity, which may confound knockdown experiments and raises concerns for therapeutic applications. Although conserved across orthologs and robust in cell-free and bacterial environments, the extent of collateral activity in mammalian cells remains disputed. Here, we investigate Cas13d collateral activity in the context of an RNA-targeting therapy for myotonic dystrophy type 1, a disease caused by a transcribed long CTG repeat expansion. We find that when targeting CUGn RNA in HeLa and other cell lines, Cas13d depletes endogenous and transgenic RNAs, interferes with critical cellular processes, and activates stress response and apoptosis pathways. We also observe collateral effects when targeting other repetitive and unique transgenic sequences, and we provide evidence for collateral activity when targeting highly expressed endogenous transcripts. To minimize collateral activity for repeat-targeting Cas13d therapeutics, we introduce gRNA excision for negative-autoregulatory optimization (GENO), a simple strategy that leverages crRNA processing to control Cas13d expression and is easily integrated into an AAV gene therapy. We argue that thorough assessment of collateral activity is necessary when applying Cas13d in mammalian cells and that implementation of GENO illustrates the advantages of compact and universally robust regulatory systems for Cas-based gene therapies. 


2021 ◽  
Vol 22 (24) ◽  
pp. 13651
Author(s):  
Caroline Lefeuvre ◽  
Hélène Le Guillou-Guillemette ◽  
Alexandra Ducancelle

Chronic hepatitis B virus (HBV) infection is one of the most common factors associated with hepatocellular carcinoma (HCC), which is the sixth most prevalent cancer among all cancers worldwide. However, the pathogenesis of HBV-mediated hepatocarcinogenesis is unclear. Evidence currently available suggests that the HBV core protein (HBc) plays a potential role in the development of HCC, such as the HBV X protein. The core protein, which is the structural component of the viral nucleocapsid, contributes to almost every stage of the HBV life cycle and occupies diverse roles in HBV replication and pathogenesis. Recent studies have shown that HBc was able to disrupt various pathways involved in liver carcinogenesis: the signaling pathways implicated in migration and proliferation of hepatoma cells, apoptosis pathways, and cell metabolic pathways inducing the development of HCC; and the immune system, through the expression and production of proinflammatory cytokines. In addition, HBc can modulate normal functions of hepatocytes through disrupting human host gene expression by binding to promoter regions. This HBV protein also promotes HCC metastasis through epigenetic alterations, such as micro-RNA. This review focuses on the molecular pathogenesis of the HBc protein in HBV-induced HCC.


2021 ◽  
Vol 22 (24) ◽  
pp. 13462
Author(s):  
Irene Rodríguez ◽  
Ester Saavedra ◽  
Henoc del Rosario ◽  
Juan Perdomo ◽  
José Quintana ◽  
...  

The World Health Organization reported that approximately 324,000 new cases of melanoma skin cancer were diagnosed worldwide in 2020. The incidence of melanoma has been increasing over the past decades. Targeting apoptotic pathways is a potential therapeutic strategy in the transition to preclinical models and clinical trials. Some naturally occurring products and synthetic derivatives are apoptosis inducers and may represent a realistic option in the fight against the disease. Thus, chalcones have received considerable attention due to their potential cytotoxicity against cancer cells. We have previously reported a chalcone containing an indole and a pyridine heterocyclic rings and an α-bromoacryloylamido radical which displays potent antiproliferative activity against several tumor cell lines. In this study, we report that this chalcone is a potent apoptotic inducer for human melanoma cell lines SK-MEL-1 and MEL-HO. Cell death was associated with mitochondrial cytochrome c release and poly(ADP-ribose) polymerase cleavage and was prevented by a non-specific caspase inhibitor. Using SK-MEL-1 as a model, we found that the mechanism of cell death involves (i) the generation of reactive oxygen species, (ii) activation of the extrinsic and intrinsic apoptotic and mitogen-activated protein kinase pathways, (iii) upregulation of TRAIL, DR4 and DR5, (iv) downregulation of p21Cip1/WAF1 and, inhibition of the NF-κB pathway.


eFood ◽  
2021 ◽  
Author(s):  
Yi-Long Ma ◽  
Yang Yang ◽  
Kiran Thakur ◽  
Carlos L. Cespedes-Acuña ◽  
Jian-Guo Zhang ◽  
...  

With an aim to explore the effects of <i>β</i>-alanine (<i>β</i>-A) on spatial memory and fatigue resistance, Kunming mice were treated with different concentrations of β-A (418, 836, and 2090 mg·kg<sup> -1</sup>·day<sup> -1</sup>). After gavage feeding with <i>β</i>-A for 10 weeks, results of the maze and MWM tests showed that <i>β</i>-A can enhance spatial learning and memory in mice. After evaluating the fatigue resistance, biochemical parameters (LG, GG, BUN, SOD, and MDA) showed significant differences in the low concentration treatment group compared to control group. Our data demonstrated that the appropriate dose of <i>β</i>-A can alleviate the oxidative stress and muscle fatigue in mice. Subsequently, expression of mRNA of key genes involved in cAMP-PKA pathway (PDE4A, MAPK1, adcy1, cAMP and CREB) was up regulated. Also, expression levels of apoptotic pathway genes were significantly affected as confirmed by qPCR and Western blotting. Our results demonstrated that <i>β</i>-A can enhance spatial learning and memory in mice via regulation of cAMP-PKA and apoptotic pathway.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1399
Author(s):  
Po-Fu Yueh ◽  
Yuan-Hao Lee ◽  
Chun-Yu Fu ◽  
Chun-Bin Tung ◽  
Fei-Ting Hsu ◽  
...  

Glioblastoma multiforme (GBM) is the most common form of malignant brain tumor, with poor prognosis; the efficacy of current standard therapy for GBM remains unsatisfactory. Magnolol, an herbal medicine from Magnolia officinalis, exhibited anticancer properties against many types of cancers. However, whether magnolol suppresses GBM progression as well as its underlying mechanism awaits further investigation. In this study, we used the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay, apoptosis marker analysis, transwell invasion and wound-healing assays to identify the effects of magnolol on GBM cells. We also validated the potential targets of magnolol on GBM with the GEPIA (Gene Expression Profiling Interactive Analysis) and Western blotting assay. Magnolol was found to trigger cytotoxicity and activate extrinsic/intrinsic apoptosis pathways in GBM cells. Both caspase-8 and caspase-9 were activated by magnolol. In addition, GEPIA data indicated the PKCδ (Protein kinase C delta)/STAT3 (Signal transducer and activator of transcription 3) signaling pathway as a potential target of GBM. Magnolol effectively suppressed the phosphorylation and nuclear translocation of STAT3 in GBM cells. Meanwhile, tumor invasion and migration ability and the associated genes, including MMP-9 (Matrix metalloproteinase-9) and uPA (Urokinase-type plasminogen activator), were all diminished by treatment with magnolol. Taken together, our results suggest that magnolol-induced anti-GBM effect may be associated with the inactivation of PKCδ/STAT3 signaling transduction.


Sign in / Sign up

Export Citation Format

Share Document