neutral amino acid
Recently Published Documents


TOTAL DOCUMENTS

479
(FIVE YEARS 47)

H-INDEX

58
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Michael P Kavanaugh ◽  
Brent R. Lyda ◽  
Gregory P. Leary ◽  
Derek Silvius ◽  
Nicholas R. Natale ◽  
...  

The conformationally restricted heterocycle hydroxy-ʟ-proline is a versatile scaffold for the synthesis of diverse multi-functionalized pyrrolidines for probing the ligand binding sites of biological targets. With the goal to develop new inhibitors of the widely expressed amino acid transporters SLC1A4 and SLC1A5 (also known as ASCT1 and ASCT2), we synthesized and functionally screened a series of hydroxy-ʟ-proline derivatives or 'prolinols' using electrophysiological and radio-labeled uptake assays on amino acid transporters from the SLC1, SLC7, and SLC38 solute carrier families. We identified a number of synthetic prolinols that act as selective high-affinity inhibitors of the SLC1 functional subfamily comprising the neutral amino acid transporters SLC1A4 and SLC1A5. The active and inactive prolinols were computationally docked into a threaded homology model and analyzed with respect to predicted molecular orientation and observed pharmacological activity. The series of hydroxy-L-proline derivatives identified here represents a new class of potential agents to pharmacologically modulate SLC1A4 and SLC1A5, amino acid exchangers that play important roles in a wide range of physiological and pathophysiological processes.


2021 ◽  
Vol 118 (49) ◽  
pp. e2113573118
Author(s):  
Carlos F. Rodriguez ◽  
Paloma Escudero-Bravo ◽  
Lucía Díaz ◽  
Paola Bartoccioni ◽  
Carmen García-Martín ◽  
...  

Despite having similar structures, each member of the heteromeric amino acid transporter (HAT) family shows exquisite preference for the exchange of certain amino acids. Substrate specificity determines the physiological function of each HAT and their role in human diseases. However, HAT transport preference for some amino acids over others is not yet fully understood. Using cryo–electron microscopy of apo human LAT2/CD98hc and a multidisciplinary approach, we elucidate key molecular determinants governing neutral amino acid specificity in HATs. A few residues in the substrate-binding pocket determine substrate preference. Here, we describe mutations that interconvert the substrate profiles of LAT2/CD98hc, LAT1/CD98hc, and Asc1/CD98hc. In addition, a region far from the substrate-binding pocket critically influences the conformation of the substrate-binding site and substrate preference. This region accumulates mutations that alter substrate specificity and cause hearing loss and cataracts. Here, we uncover molecular mechanisms governing substrate specificity within the HAT family of neutral amino acid transporters and provide the structural bases for mutations in LAT2/CD98hc that alter substrate specificity and that are associated with several pathologies.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kouko Tatsumi ◽  
Kaoru Kinugawa ◽  
Ayami Isonishi ◽  
Masahiro Kitabatake ◽  
Hiroaki Okuda ◽  
...  

AbstractWe have reported that the transcription factor Olig2 labels a subpopulation of astrocytes (Olig2-astrocytes), which show distribution patterns different from those of GFAP-expressing astrocytes (GFAP-astrocytes) in the adult brain. Here, to uncover the specific functions of Olig2-astrocytes, we first analyzed public single-cell RNA-seq databases of adult mouse brains. Unbiased classification of gene expression profiles and subsequent gene ontology analyses revealed that the majority of Olig2-astrocytes belonged to an astrocytic cluster that is enriched for transporter-related genes. SLC7A10 (also known as ASC-1) was one of the representative neutral amino acid transporter genes in the cluster. To complement the in silico data analyses, we differentially isolated Olig2- and GFAP-astrocytes from the same frozen section of the lateral globus pallidus using laser microdissection and compared their gene expression by quantitative reverse transcription PCR. We confirmed that Olig2 and GFAP mRNAs were preferentially expressed in the Olig2- and GFAP-astrocytes, respectively, indicating that the laser microdissection method yielded minimal cross-contamination between two types of cells. The Olig2-astrocytes expressed significantly higher levels of SLC7A10 mRNA than the GFAP-astrocytes, corroborating the in silico data. We next localized SLC7A10 protein by immunohistochemistry in the lateral globus pallidus, which was also genetically labeled for Olig2. SLC7A10 co-localized with Olig2-genetic labeling, especially on the fine processes of Olig2-astrocytes. These results are consistent with the recent discovery that SLC7A10 is expressed not only in neurons but also in a subset of astrocytes. Taken together, our findings suggest that SLC7A10 exerts specific functions in Olig2-astrocytes of the adult brain.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Narangerel Jigjidkhorloo ◽  
Kohsuke Kanekura ◽  
Jun Matsubayashi ◽  
Daigo Akahane ◽  
Koji Fujita ◽  
...  

AbstractL-type neutral amino acid transporter 1 (LAT1) is a heterodimeric membrane transport protein involved in neutral amino acid transport. LAT1 is highly expressed in various malignant solid tumors and plays an essential role in cell proliferation. However, its role in malignant lymphoma remains unknown. Here, we evaluated LAT1 expression level in tissues from 138 patients with Non-Hodgkin lymphoma (NHL). Overexpression of LAT1 was confirmed in all types of NHL and we found that there is a significant correlation between the level of LAT1 expression and lymphoma grade. The LAT1 expression was higher in aggressive types of lymphomas when compared with static types of lymphomas, suggesting that active tumor proliferation requires nutrient uptake via LAT1. The expression level of LAT1 was inversely correlated with patients’ survival span. Furthermore, pharmacological inhibition of LAT1 by a specific inhibitor JPH203 inhibits lymphoma cell growth. In conclusion, our study demonstrated that LAT1 expression can be used as a prognostic marker for patients with NHL and targeting LAT1 by JPH203 can be a novel therapeutic modality for NHL.


Function ◽  
2021 ◽  
Author(s):  
Bruce R Stevens ◽  
J Clive Ellory ◽  
Robert L Preston

Abstract The SARS-CoV-2 receptor, Angiotensin Converting Enzyme-2 (ACE2), is expressed at levels of greatest magnitude in the small intestine as compared to all other human tissues. Enterocyte ACE2 is co-expressed as the apical membrane trafficking partner obligatory for expression and activity of the B0AT1 sodium-dependent neutral amino acid transporter. These components are assembled as an [ACE2: B0AT1]2 dimer-of-heterodimers quaternary complex that putatively steers SARS-CoV-2 tropism in the gastrointestinal (GI) tract. GI clinical symptomology is reported in about half of COVID-19 patients, and can be accompanied by gut shedding of virion particles. We hypothesized that within this 4-mer structural complex, each [ACE2: B0AT1] heterodimer pair constitutes a physiological “functional unit.” This was confirmed experimentally by employing purified lyophilized enterocyte brush border membrane vesicles that were exposed to increasing doses of high-energy electron radiation from a 16 MeV linear accelerator. Based on established target theory, the results indicated the presence of Na+-dependent neutral amino acid influx transport activity functional unit with target size mw = 183.7 ± 16.8 kDa in situ in intact apical membranes. Each thermodynamically stabilized [ACE2: B0AT1] heterodimer functional unit manifests the transport activity within the whole ∼345 kDa [ACE2: B0AT1]2 dimer-of-heterodimers quaternary structural complex. The results are consistent with our prior molecular docking modeling and gut-lung axis approaches to understanding COVID-19. These findings advance the understanding of the physiology of B0AT1 interaction with ACE2 in the gut, and thereby potentially contribute to translational developments designed to treat or mitigate COVID-19 variant outbreaks and/or GI symptom persistence in long-haul Post-Acute Sequelae of SARS-CoV-2 (PASC).


Sign in / Sign up

Export Citation Format

Share Document