fuel savings
Recently Published Documents


TOTAL DOCUMENTS

390
(FIVE YEARS 114)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Vol 6 (2 (114)) ◽  
pp. 136-146
Author(s):  
Anatolii Usov ◽  
Mykola Slobodianiuk ◽  
Mark Nikolskyi

The high pressure fuel system is the fundamental system that forms the indicator of the minimum fuel consumption per unit of the vessel's path. The calculation of the optimal control of the vessel complex with the main diesel engine is performed according to the criterion of the minimum fuel consumption per unit path at a given average velocity of the vessel. The propulsion of a vessel with a main diesel engine is described by equations. The equations contain a significant number of parameters, the reduction of which is performed by introducing dimensionless quantities, followed by bringing the equations into dimensionless forms. This made it possible to present a solution to the optimal control law for the main vessel diesel engine as part of the vessel complex. Optimal control of the vessel complex under stormy navigation conditions has been investigated. The calculations of the control law of the vessel complex, which ensure the movement of the vessel with the maximum average velocity in conditions of stormy navigation, are presented. It is determined that the established law of control of the vessel complex ensures the minimum fuel consumption per mile at a given average velocity of its movement. The influence of a high-pressure fuel system on the optimal control of a vessel diesel engine has been investigated. Thus, the calculated studies indicate that for all values of the parameters of the vessel complex according to the law of control of the fuel system Ф=а+b∙C2(τ), they give fuel savings up to 6% per unit of way in comparison with the law of control of the vessel complex Ф=а+b∙(c1(τ)/c2(τ)). The obtained ratios during modeling and optimal control of the main diesel engine of the vessel complex allow using the dynamic programming method to analyze the fuel consumption per unit path with optimal control compared to the corresponding constant control


2021 ◽  
Author(s):  
Carrie Schoeneberger ◽  
Jingyi Zhang ◽  
Colin McMillan ◽  
Jennifer B. Dunn ◽  
Eric Masanet

Abstract Electrification is a key strategy for decarbonizing the industrial sector. Industrial process heating, which still relies heavily on fossil fuel combustion and accounts for the majority of sector wide GHG emissions, is a particularly attractive electrification target. Electrifying industrial boilers represents a cross-cutting opportunity for GHG emissions reductions, given their widespread use in most manufacturing industries. Yet, there are gaps in the understanding of the current population of conventional industrial boilers in the United States that preclude a characterization of boiler electrification’s technical potential to reduce fuel consumption and GHG emissions. In this study, we develop an up-to-date dataset of the industrial boiler population in the U.S. and quantify the county-level electricity requirements and net changes in fuel use and GHG emissions under the current electric grid and theoretical future grid scenarios. Our results show an increase of 105 MMmtCO2e and 73 MMmtCO2e in GHG emissions from boiler electrification, with and without the replacement of byproduct fuels, respectively, under the current electric grid. GHG emissions savings are currently possible only in certain regions of the U.S. unless future grids are decarbonized. We also provide recommendations for policy makers and manufacturing facilities that would advance the electrification of industrial boilers in locations and industries toward fuel savings and GHG emissions reductions.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 37
Author(s):  
Ahmad Fayad ◽  
Hussein Ibrahim ◽  
Adrian Ilinca ◽  
Sasan Sattarpanah Karganroudi ◽  
Mohamad Issa

Rail transport, specifically diesel–electric trains, faces fundamental challenges in reducing fuel consumption to improve financial performance and reduce GHG emissions. One solution to improve energy efficiency is the electric brake regenerative technique. This technique was first applied on electric trains several years ago, but it is still considered to improve diesel–electric trains efficiency. Numerous parameters influence the detailed estimation of brake regenerative technique performance, which makes this process particularly difficult. This paper proposes a simplified energetic approach for a diesel–electric train with different storage systems to assess these performances. The feasibility and profitability of using a brake regenerative system depend on the quantity of energy that can be recuperated and stored during the train’s full and partial stop. Based on a simplified energetic calculation and cost estimation, we present a comprehensive and realistic calculation to evaluate ROI, net annual revenues, and GHG emission reduction. The feasibility of the solution is studied for different train journeys, and the most significant parameters affecting the impact of using this technique are identified. In addition, we study the influence of electric storage devices and low temperatures. The proposed method is validated using experimental results available in the literature showing that this technique resulted in annual energy savings of 3400 MWh for 34 trains, worth USD 425,000 in fuel savings.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8566
Author(s):  
Edoardo De Renzis ◽  
Valerio Mariani ◽  
Gian Marco Bianchi ◽  
Giulio Cazzoli ◽  
Stefania Falfari ◽  
...  

Nowadays reducing green-house gas emissions and pushing the fossil fuel savings in the field of light-duty vehicles is compulsory to slow down climate change. To this aim, the use of new combustion modes and dilution strategies to increase the stability of operations rich in diluent is an effective technique to reduce combustion temperatures and heat losses in throttled operations. Since the combustion behavior in those solutions highly differs from that of typical market systems, fundamental analyses in optical engines are mandatory in order to gain a deep understanding of those and to tune new models for improving the mutual support between experiments and simulations. However, it is known that optical accessible engines suffer from significant blow-by collateral flow due to the installation of the optical measure line. Thus, a reliable custom blow-by model capable of being integrated with both mono-dimensional and three-dimensional simulations was developed and validated against experimental data. The model can work for two different configurations: (a) stand-alone, aiming at providing macroscopic data on the ignitable mixture mass loss/recover through the piston rings; (b) combined, in which it is integrated in CFD engine simulations for the local analysis of likely collateral heat release induced by blow-by. Furthermore, once the model was validated, the effect of the engine speed and charge dilution on the blow-by phenomenon in the optical engine were simulated and discussed in the stand-alone mode.


Author(s):  
Arber Haxhiu ◽  
Jorma Kyyrä ◽  
Ricky Chan ◽  
Sami Kanerva

Previously, the Variable DC approach concept was proposed for operation of hybrid fuel cell and battery powered marine vessels. The concept was shown to provide significant efficiency improvement, and consequently improved hydrogen fuel savings. However, although the general concept and the control of battery DC/DC converter has been detailly described in previous works, the operation of fuel cell DC/DC converter in different Variable DC approach control modes has not been presented. This paper proposes a fuel cell DC/DC converter control system specifically designed for operation in the three Variable DC approach control modes. The functionality of the proposed fuel cell DC/DC converter and the Variable DC approach in general is verified using a hardware-in-loop test setup consisting of virtual power stage models and real converter controllers. The system is shown to function well in both normal operating conditions and various fault conditions.


Author(s):  
M Vahs

In 2018, a German- Dutch project consortium under the scientific direction of the Emden/Leer University of Applied Sciences retrofitted and commissioned the latest rotor development of the Eco-Flettner type on the test ship Fehn Pollux of the Leer-based shipping company Fehn Ship Management. Main design features are both upper and lower endplates with large diameter for improved aerodynamic performance and modular manufacturing. The retrofitting concept is groundbreaking in terms of easy transferability to other ships. Upscaling to a significant share of the world merchant fleet could make a substantial and realizable contribution to climate protection in the short term and potentially reduced transport costs in the long term. The most frequently asked question in connection with modern sail drives is about the performance potential and the associated fuel savings. Transparent performance data is required to enable an economic prognosis for the use of Flettner rotors on ships. The Faculty of Maritime Sciences at Emden/ Leer University of Applied Sciences has developed an automatic control and monitoring system for Flettner rotors that also records extensive operating and environmental data. The data shows that all previous assumptions and model calculations are basically correct. With regard to the performance potential, the first series of measurements show even higher rotor forces compared with model calculations. This is a further benefit for Flettner rotor efficiency and could help the technology achieve a breakthrough as a building block for low-emission shipping.


2021 ◽  
Author(s):  
Gautam Chhibber ◽  
Mayank Kumar Dave

Abstract This paper discusses how the application of large, gas turbine-based power blocks (>50,000-hp) in pipeline compression stations can contribute to lower capital costs, improved lifecycle performance, and reduced carbon emissions. For illustrative purposes, two compression facility power block configurations (nine 30,0000-hp trains vs. five 55,000-hp trains) are compared on the basis of capital expenditures (CapEx), operating expenditures (OpEx), availability, efficiency, and operating flexibility. A summary of the study's results are as follows: – Net present value (NPV) analyses show that 5x55,000-hp ISO trains can result in up to $50 million reduction in CAPEX vs 9x30,000-hp ISO trains – By having fewer trains, operations & maintenance (O&M) costs can be reduced by as much as 20% – Lifetime fuel savings with a 5x55,000-hp train configuration vs. 9x30,000-hp trains are estimated at $40 million, owing to the increased operating flexibility of modern gas turbines, even at partial loads. The paper will also present considerations for digitalization, modular construction, and package integration – with a particular focus on how these measures can be leveraged to lower execution risk and enhance the lifecycle performance of gas turbine-driven compression trains.


Author(s):  
Jacob Ward ◽  
Evan Stegner ◽  
Mark Hoffman ◽  
David M. Bevly

Abstract This work develops and implements an NMPC control system to facilitate fuel-optimal platooning of Class 8 vehicles over challenging terrain. Prior research has shown that Cooperative Adaptive Cruise Control (CACC), which allows multiple Class 8 vehicles to follow in close succession, can save between 3 and 8% in overall fuel consumption on flat terrain. However, on more challenging terrain, e.g. rolling hills, platooning vehicles can experience diminished fuel savings, and, in some cases, an increase in fuel consumption relative to individual vehicle operation. This research explores the use of Nonlinear Model Predictive Control (NMPC) with predefined route grade profiles to allow platooning vehicles to generate an optimal velocity trajectory with respect to fuel consumption. In order to successfully implement the NMPC system, a model relating vehicle velocity to fuel consumption was generated and validated using experimental data. Additionally, the predefined route grade profiles were created by using the vehicle's GPS velocity over the desired terrain. The real-time NMPC system was then implemented on a two-truck platoon operating over challenging terrain, with a reference vehicle running individually. The results from NMPC platooning are compared against fuel results from a classical proportional-integral-derivative (PID) headway control method. This comparison yields the comparative fuel savings and energy efficiency benefit of NMPC system. In the final analysis, significant fuel savings of greater than 14 and 20% were seen for the lead and following vehicles relative to their respective traditional cruise control and platooning architectures.


Sign in / Sign up

Export Citation Format

Share Document