snow conditions
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 73)

H-INDEX

28
(FIVE YEARS 4)

Abstract Snow is a fundamental component of global and regional water budgets, particularly in mountainous areas and regions downstream that rely on snowmelt for water resources. Land surface models (LSMs) are commonly used to develop spatially distributed estimates of snow water equivalent (SWE) and runoff. However, LSMs are limited by uncertainties in model physics and parameters, among other factors. In this study, we describe the use of model calibration tools to improve snow simulations within the Noah-MP LSM as the first step in an Observing System Simulation Experiment (OSSE). Noah-MP is calibrated against the University of Arizona (UA) SWE product over a Western Colorado domain. With spatially varying calibrated parameters, we run calibrated and default Noah-MP simulations for water years 2010-2020. By evaluating both simulations against the UA dataset, we show that calibration decreases domain averaged temporal RMSE and bias for snow depth from 0.15 to 0.13 m and from -0.036 to -0.0023 m, respectively, and improves the timing of snow ablation. Increased snow simulation performance also improves estimates of model-simulated runoff in four of six study basins, though only one has statistically significant improvement. Spatially distributed Noah-MP snow parameters perform better than default uniform values. We demonstrate that calibrating variables related to snow albedo calculations and rain-snow partitioning, among other processes, is a necessary step for creating a nature run that reasonably approximates true snow conditions for the OSSEs. Additionally, the inclusion of a snowfall scaling term can address biases in precipitation from meteorological forcing datasets, further improving the utility of LSMs for generating reliable spatiotemporal estimates of snow.


2022 ◽  
Author(s):  
Laura Bosco ◽  
Yanjie Xu ◽  
Purabi Deshpande ◽  
Aleksi Lehikoinen

Abstract Climatic warming is forcing numerous species to shift their ranges poleward, which has been demonstrated for many taxa across the globe. Yet, the influence of habitat types on within- and among-species variations of distribution shifts has rarely been studied, especially so for the non-breeding season. Here, we investigated habitat specific shift distances of northern range margins and directions of the center of gravity based on a long-term dataset of overwintering birds in Finland. Specifically, we explored influences of habitat type, snow cover depths, species’ climatic niche and habitat specialization on range shifts from 1980’s to 2010’s in 81 bird species. Birds overwintering in farmlands shifted significantly more often northwards than birds of the same species in rural and forest habitats, while the northern range margin shift distances did not significantly differ among the habitat types. Snow cover was negatively associated with the eastward shift direction across all habitats, while we found habitat specific relations to snow cover with northward shift directions and northern range margins shift distances. Species with stronger habitat specializations shifted more strongly towards north as compared to generalist species, whereas the climatic niche of bird species only marginally correlated with range shifts, so that cold-dwelling species shifted longer distances and more clearly eastwards. Our study reveals habitat specific patterns linked to snow conditions for overwintering boreal birds and highlights importance of habitat availability and preference in climate driven range shifts.


AMBIO ◽  
2021 ◽  
Author(s):  
Gunhild C. Rosqvist ◽  
Niila Inga ◽  
Pia Eriksson

AbstractClimate in the Arctic has warmed at a more rapid pace than the global average over the past few decades leading to weather, snow, and ice situations previously unencountered. Reindeer herding is one of the primary livelihoods for Indigenous peoples throughout the Arctic. To understand how the new climate state forces societal adaptation, including new management strategies and needs for preserved, interconnected, undisturbed grazing areas, we coupled changes in temperature, precipitation, and snow depth recorded by automatic weather stations to herder observations of reindeer behaviour in grazing areas of the Laevas Sámi reindeer herding community, northern Sweden. Results show that weather and snow conditions strongly determine grazing opportunities and therefore reindeer response. We conclude that together with the cumulative effects of increased pressures from alternative land use activities, the non-predictable environmental conditions that are uniquely part of the warming climate seriously challenge future reindeer herding in northern Sweden.


2021 ◽  
Author(s):  
Alan Rhoades ◽  
Benjamin Hatchett ◽  
Mark Risser ◽  
William Collins ◽  
Nicolas Bambach ◽  
...  

Abstract Societies and ecosystems within and downstream of mountains rely on seasonal snowmelt to satisfy their water demands. Anthropogenic climate change has reduced mountain snowpacks worldwide, altering snowmelt magnitude and timing. Here, the global warming level leading to widespread and persistent mountain snowpack decline, termed low-to-no snow, is estimated for the world's most latitudinally contiguous mountain range, the American Cordillera. We show a combination of dynamical, thermodynamical, and hypsometric factors results in an asymmetric emergence of low-to-no snow conditions within the midlatitudes of the American Cordillera. Low-to-no snow emergence occurs approximately 20 years earlier in the Southern Hemisphere, at a third of the local warming level, and coincides with runoff efficiency declines in both dry and wet years. Prevention of a low-to-no snow future in either hemisphere requires the level of global warming to be held to, at most, +2.5 °C.


2021 ◽  
Author(s):  
Cristina Pérez-Guillén ◽  
Frank Techel ◽  
Martin Hendrick ◽  
Michele Volpi ◽  
Alec van Herwijnen ◽  
...  

Abstract. Even today, the assessment of avalanche danger is by large a subjective, yet data-based decision-making process. Human experts analyze heterogeneous data volumes, diverse in scale, and conclude on the avalanche scenario based on their experience. Nowadays, modern machine learning methods and the rise in computing power in combination with physical snow cover modelling open up new possibilities for developing decision support tools for operational avalanche forecasting. Therefore, we developed a fully data-driven approach to predict the regional avalanche danger level, the key component in public avalanche forecasts, for dry-snow conditions in the Swiss Alps. Using a large data set of more than 20 years of meteorological data measured by a network of automated weather stations, which are located at the elevation of potential avalanche starting zones, and snow cover simulations driven with these input weather data, we trained two random forest (RF) classifiers. The first classifier (RF #1) was trained relying on the forecast danger levels published in the avalanche bulletin. Given the uncertainty related to a forecast danger level as a target variable, we trained a second classifier (RF #2), relying on a quality-controlled subset of danger level labels. We optimized the RF classifiers by selecting the best set of input features combining meteorological variables and features extracted from the simulated profiles. The accuracy of the danger level predictions ranged between 74 % and 76 % for RF #1, and between 72 % and 78 % for RF #2, with both models achieving better performance than previously developed methods. To assess the accuracy of the forecast, and thus the quality of our labels, we relied on nowcast assessments of avalanche danger by well-trained observers. The performance of both models was similar to the accuracy of the current experience-based Swiss avalanche forecasts (which is estimated to 76 %). The models performed consistently well throughout the Swiss Alps, thus in different climatic regions, albeit with some regional differences. A prototype model with the RF classifiers was already tested in a semi-operational setting by the Swiss avalanche warning service during the winter 2020-2021. The promising results suggest that the model may well have potential to become a valuable, supplementary decision support tool for avalanche forecasters when assessing avalanche hazard.


Author(s):  
Cristina Pérez-Guillén ◽  
Frank Techel ◽  
Martin Hendrick ◽  
Michele Volpi ◽  
Alec van Herwijnen ◽  
...  

2021 ◽  
Vol 13 (22) ◽  
pp. 4617
Author(s):  
Ryan W. Webb ◽  
Adrian Marziliano ◽  
Daniel McGrath ◽  
Randall Bonnell ◽  
Tate G. Meehan ◽  
...  

Extensive efforts have been made to observe the accumulation and melting of seasonal snow. However, making accurate observations of snow water equivalent (SWE) at global scales is challenging. Active radar systems show promise, provided the dielectric properties of the snowpack are accurately constrained. The dielectric constant (k) determines the velocity of a radar wave through snow, which is a critical component of time-of-flight radar techniques such as ground penetrating radar and interferometric synthetic aperture radar (InSAR). However, equations used to estimate k have been validated only for specific conditions with limited in situ validation for seasonal snow applications. The goal of this work was to further understand the dielectric permittivity of seasonal snow under both dry and wet conditions. We utilized extensive direct field observations of k, along with corresponding snow density and liquid water content (LWC) measurements. Data were collected in the Jemez Mountains, NM; Sandia Mountains, NM; Grand Mesa, CO; and Cameron Pass, CO from February 2020 to May 2021. We present empirical relationships based on 146 snow pits for dry snow conditions and 92 independent LWC observations in naturally melting snowpacks. Regression results had r2 values of 0.57 and 0.37 for dry and wet snow conditions, respectively. Our results in dry snow showed large differences between our in situ observations and commonly applied equations. We attribute these differences to assumptions in the shape of the snow grains that may not hold true for seasonal snow applications. Different assumptions, and thus different equations, may be necessary for varying snowpack conditions in different climates, suggesting that further testing is necessary. When considering wet snow, large differences were found between commonly applied equations and our in situ measurements. Many previous equations assume a background (dry snow) k that we found to be inaccurate, as previously stated, and is the primary driver of resulting uncertainty. Our results suggest large errors in SWE (10–15%) or LWC (0.05–0.07 volumetric LWC) estimates based on current equations. The work presented here could prove useful for making accurate observations of changes in SWE using future InSAR opportunities such as NISAR and ROSE-L.


2021 ◽  
Author(s):  
Arthur A. D. Broadbent ◽  
Michael Bahn ◽  
William J. Pritchard ◽  
Lindsay K. Newbold ◽  
Tim Goodall ◽  
...  

2021 ◽  
Vol 118 (44) ◽  
pp. e2107306118
Author(s):  
Florie Giacona ◽  
Nicolas Eckert ◽  
Christophe Corona ◽  
Robin Mainieri ◽  
Samuel Morin ◽  
...  

Snow is highly sensitive to atmospheric warming. However, because of the lack of sufficiently long snow avalanche time series and statistical techniques capable of accounting for the numerous biases inherent to sparse and incomplete avalanche records, the evolution of process activity in a warming climate remains little known. Filling this gap requires innovative approaches that put avalanche activity into a long-term context. Here, we combine extensive historical records and Bayesian techniques to construct a 240-y chronicle of snow avalanching in the Vosges Mountains (France). We show evidence that the transition from the late Little Ice Age to the early twentieth century (i.e., 1850 to 1920 CE) was not only characterized by local winter warming in the order of +1.35 °C but that this warming also resulted in a more than sevenfold reduction in yearly avalanche numbers, a severe shrinkage of avalanche size, and shorter avalanche seasons as well as in a reduction of the extent of avalanche-prone terrain. Using a substantial corpus of snow and climate proxy sources, we explain this abrupt shift with increasingly scarcer snow conditions with the low-to-medium elevations of the Vosges Mountains (600 to 1,200 m above sea level [a.s.l.]). As a result, avalanches migrated upslope, with only a relict activity persisting at the highest elevations (release areas >1,200 m a.s.l.). This abrupt, unambiguous response of snow avalanche activity to warming provides valuable information to anticipate likely changes in avalanche behavior in higher mountain environments under ongoing and future warming.


Sign in / Sign up

Export Citation Format

Share Document