tca cycle intermediates
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 44)

H-INDEX

22
(FIVE YEARS 5)

2021 ◽  
Vol 17 (9) ◽  
pp. e1009941
Author(s):  
Jeffrey M. Collins ◽  
Dean P. Jones ◽  
Ashish Sharma ◽  
Manoj Khadka ◽  
Ken H. Liu ◽  
...  

The metabolic signaling pathways that drive pathologic tissue inflammation and damage in humans with pulmonary tuberculosis (TB) are not well understood. Using combined methods in plasma high-resolution metabolomics, lipidomics and cytokine profiling from a multicohort study of humans with pulmonary TB disease, we discovered that IL-1β-mediated inflammatory signaling was closely associated with TCA cycle remodeling, characterized by accumulation of the proinflammatory metabolite succinate and decreased concentrations of the anti-inflammatory metabolite itaconate. This inflammatory metabolic response was particularly active in persons with multidrug-resistant (MDR)-TB that received at least 2 months of ineffective treatment and was only reversed after 1 year of appropriate anti-TB chemotherapy. Both succinate and IL-1β were significantly associated with proinflammatory lipid signaling, including increases in the products of phospholipase A2, increased arachidonic acid formation, and metabolism of arachidonic acid to proinflammatory eicosanoids. Together, these results indicate that decreased itaconate and accumulation of succinate and other TCA cycle intermediates is associated with IL-1β-mediated proinflammatory eicosanoid signaling in pulmonary TB disease. These findings support host metabolic remodeling as a key driver of pathologic inflammation in human TB disease.


2021 ◽  
Author(s):  
Ozan Baytas ◽  
Shawn M Davidson ◽  
Ralph J DeBerardinis ◽  
Eric M Morrow

Abstract The metabolic needs for postnatal growth of the human nervous system are vast. Recessive loss-of-function mutations in the mitochondrial enzyme glutamate pyruvate transaminase 2 (GPT2) in humans cause postnatal undergrowth of brain, and cognitive and motor disability. We demonstrate that GPT2 governs critical metabolic mechanisms in neurons required for neuronal growth and survival. These metabolic processes include neuronal alanine synthesis and anaplerosis, the replenishment of tricarboxylic acid (TCA) cycle intermediates. We performed metabolomics across postnatal development in Gpt2-null mouse brain to identify the trajectory of dysregulated metabolic pathways: alterations in alanine occur earliest; followed by reduced TCA cycle intermediates and reduced pyruvate; followed by elevations in glycolytic intermediates and amino acids. Neuron-specific deletion of GPT2 in mice is sufficient to cause motor abnormalities and death pre-weaning, a phenotype identical to the germline Gpt2-null mouse. Alanine biosynthesis is profoundly impeded in Gpt2-null neurons. Exogenous alanine is necessary for Gpt2-null neuronal survival in vitro, but is not needed for Gpt2-null astrocytes. Dietary alanine supplementation in Gpt2-null mice enhances animal survival, and improves the metabolic profile of Gpt2-null brain, but does not alone appear to correct motor function. In surviving Gpt2-null animals, we observe smaller upper and lower motor neurons in vivo. We also observe selective death of lower motor neurons in vivo with worsening motor behavior with age. In conclusion, these studies of the pathophysiology of GPT2 Deficiency have identified metabolic mechanisms required for neuronal growth and that potentially underlie selective neuronal vulnerabilities in motor neurons.


2021 ◽  
Author(s):  
Ansen H.P. Burr ◽  
Junyi Ji ◽  
Kadir Ozler ◽  
Onur Eskiocak ◽  
Brian Yueh ◽  
...  

AbstractThe colonic epithelium requires continuous renewal by intestinal stem cells (ISCs) to restore the barrier after damage and proliferation of epithelial cells is modulated by dietary metabolites. We demonstrate that mice fed a high sugar diet failed to repair colonic barrier damage, resulting in increased intestinal pathology. Culturing ISCs in excess sugar limited murine and human colonoid development, indicating that dietary sugar can directly affect colonic epithelial proliferation. Similarly, in vivo lineage tracing experiments and transcriptomic analysis indicated that dietary sugar impeded the proliferative potential of ISCs. ISCs and their immediate daughter cells predominantly rely on mitochondrial respiration for energy; however, metabolic analysis of colonic crypts revealed that a high sugar diet primed the epithelium for glycolysis without a commensurate increase in aerobic respiration. Colonoids cultured in high-glucose conditions accumulated glycolytic metabolites but not TCA cycle intermediates, indicating that the two metabolic pathways may not be coupled in proliferating intestinal epithelium. Accordingly, biochemically inducing pyruvate flux through the TCA cycle by inhibiting pyruvate dehydrogenase kinase rescued sugar-impaired colonoid development. Our results indicate that excess dietary sugar can directly inhibit epithelial proliferation in response to damage and may inform diets that better support the treatment of acute intestinal injury.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wan-Chi Chang ◽  
Jisun So ◽  
Stefania Lamon-Fava

AbstractThe omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) affect cell function and metabolism, but the differential effects of EPA and DHA are not known. In a randomized, controlled, double-blind, crossover study, we assessed the effects of 10-week supplementation with EPA-only and DHA-only (3 g/d), relative to a 4-week lead-in phase of high oleic acid sunflower oil (3 g/day, defined as baseline), on fasting serum metabolites in 21 subjects (9 men and 12 post-menopausal women) with chronic inflammation and some characteristics of metabolic syndrome. Relative to baseline, EPA significantly lowered the tricarboxylic acid (TCA) cycle intermediates fumarate and α-ketoglutarate and increased glucuronate, UDP-glucuronate, and non-esterified DHA. DHA significantly lowered the TCA cycle intermediates pyruvate, citrate, isocitrate, fumarate, α-ketoglutarate, and malate, and increased succinate and glucuronate. Pathway analysis showed that both EPA and DHA significantly affected the TCA cycle, the interconversion of pentose and glucuronate, and alanine, and aspartate and glutamate pathways (FDR < 0.05) and that DHA had a significantly greater effect on the TCA cycle than EPA. Our results indicate that EPA and DHA exhibit both common and differential effects on cell metabolism in subjects with chronic inflammation and some key aspects of metabolic syndrome.


2021 ◽  
Vol 28 ◽  
Author(s):  
Yamin Liang ◽  
Yanmei Chen ◽  
Lu Li ◽  
Shulei Zhang ◽  
Jinyan Xiao ◽  
...  

: The tricarboxylic acid (TCA) cycle is the center of energy metabolism in eukaryotic cells and dynamically adjusted according to energy needs of cells. Macrophages are activated by inflammatory stimuli, and then two breakpoints in TCA cycle lead to the accumulation of intermediates. Atherosclerosis is a chronic inflammatory process. Here, the "non-metabolic" signaling functions of TCA cycle intermediates in the macrophage under inflammatory stimulation and the role of intermediates in the progression of atherosclerosis were discussed.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Melissa Inigo ◽  
Stanisław Deja ◽  
Shawn C. Burgess

The reactions of the tricarboxylic acid (TCA) cycle allow the controlled combustion of fat and carbohydrate. In principle, TCA cycle intermediates are regenerated on every turn and can facilitate the oxidation of an infinite number of nutrient molecules. However, TCA cycle intermediates can be lost to cataplerotic pathways that provide precursors for biosynthesis, and they must be replaced by anaplerotic pathways that regenerate these intermediates. Together, anaplerosis and cataplerosis help regulate rates of biosynthesis by dictating precursor supply, and they play underappreciated roles in catabolism and cellular energy status. They facilitate recycling pathways and nitrogen trafficking necessary for catabolism, and they influence redox state and oxidative capacity by altering TCA cycle intermediate concentrations. These functions vary widely by tissue and play emerging roles in disease. This article reviews the roles of anaplerosis and cataplerosis in various tissues and discusses how they alter carbon transitions, and highlights their contribution to mechanisms of disease. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 22 (13) ◽  
pp. 7076
Author(s):  
Jeevan R. Singiri ◽  
Bupur Swetha ◽  
Noga Sikron-Persi ◽  
Gideon Grafi

Dead organs enclosing embryos, such as seed coats and pericarps, are emerging as important maternally-derived components of the dispersal unit that affect seed performance and fate. In the face of climate change and increased incidents of heatwaves, we sought to investigate the effect of salinity (S), short episodes of high temperature (HS), and combination of S + HS (SHS), at the reproductive phase, on the properties of dead pericarps of Brassica juncea. Proteome and metabolome analyses revealed multiple proteins and metabolites stored in dead pericarps whose levels and composition were altered under single and combined stress conditions. The protein profile of SHS showed a higher correlation with salt than with HS indicating the dominant effect of salt over heat stress. On the other hand, the analysis of metabolites showed that the profile of SHS has better correlation with HS than with salt. The integration of metabolic and proteomic data showed that changes in TCA cycle intermediates and certain amino acids (e.g., proline) under salt treatments (S and SHS) are highly correlated with changes in proteins involved in their biosynthetic pathways. Thus, accumulation of proteins and metabolites in dead pericarps is differently affected by single and combination of salt and heat stresses. Salinity appears to dominate plant response to combined stresses at the protein level, while heat appears to be the major factor affecting metabolite accumulation in dead pericarps.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luis Cervela-Cardona ◽  
Takuya Yoshida ◽  
Youjun Zhang ◽  
Masaaki Okada ◽  
Alisdair Fernie ◽  
...  

Photosynthesis in chloroplasts during the day and mitochondrial respiration during the night execute nearly opposing reactions that are coordinated with the internal cellular status and the external conditions. Here, we describe a mechanism by which the Arabidopsis clock component TIMING OF CAB EXPRESSION1 (TOC1) contributes to the diurnal regulation of metabolism. Proper expression of TOC1 is important for sustaining cellular energy and for the diel and circadian oscillations of sugars, amino acids and tricarboxylic acid (TCA) cycle intermediates. TOC1 binds to the promoter of the TCA-related gene FUMARASE 2 to repress its expression at night, which results in decreased fumarate accumulation in TOC1 over-expressing plants and increased in toc1-2 mutant. Genetic interaction studies confirmed that over-expression of FUMARASE 2 in TOC1 over-expressing plants alleviates the molecular and physiological energy-deprivation phenotypes of TOC1 over-expressing plants. Thus, we propose that the tandem TOC1-FUMARASE 2 is one of the mechanisms that contribute to the regulation of plant metabolism during the day and night.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Dong Wang ◽  
Robert Hartman ◽  
Chao Han ◽  
Chao-ming Zhou ◽  
Brandon Couch ◽  
...  

Abstract Background Intervertebral disc degeneration contributes to low back pain. The avascular intervertebral disc consists of a central hypoxic nucleus pulpous (NP) surrounded by the more oxygenated annulus fibrosus (AF). Lactic acid, an abundant end-product of NP glycolysis, has long been viewed as a harmful waste that acidifies disc tissue and decreases cell viability and function. As lactic acid is readily converted into lactate in disc tissue, the objective of this study was to determine whether lactate could be used by AF cells as a carbon source rather than being removed from disc tissue as a waste byproduct. Methods Import and conversion of lactate to tricarboxylic acid (TCA) cycle intermediates and amino acids in rabbit AF cells were measured by heavy-isotope (13C-lactate) tracing experiments using mass spectrometry. Levels of protein expression of lactate converting enzymes, lactate importer and exporter in NP and AF tissues were quantified by Western blots. Effects of lactate on proteoglycan (35S-sulfate) and collagen (3H-proline) matrix protein synthesis and oxidative phosphorylation (Seahorse XFe96 Extracellular Flux Analyzer) in AF cells were assessed. Results Heavy-isotope tracing experiments revealed that AF cells imported and converted lactate into TCA cycle intermediates and amino acids using in vitro cell culture and in vivo models. Addition of exogenous lactate (4 mM) in culture media induced expression of the lactate importer MCT1 and increased oxygen consumption rate by 50%, mitochondrial ATP-linked respiration by 30%, and collagen synthesis by 50% in AF cell cultures grown under physiologic oxygen (2-5% O2) and glucose concentration (1-5 mM). AF tissue highly expresses MCT1, LDH-H, an enzyme that preferentially converts lactate to pyruvate, and PDH, an enzyme that converts pyruvate to acetyl-coA. In contrast, NP tissue highly expresses MCT4, a lactate exporter, and LDH-M, an enzyme that preferentially converts pyruvate to lactate. Conclusions These findings support disc lactate-dependent metabolic symbiosis in which lactate produced by the hypoxic, glycolytic NP cells is utilized by the more oxygenated AF cells via oxidative phosphorylation for energy and matrix production, thus shifting the current research paradigm of viewing disc lactate as a waste product to considering it as an important biofuel. These scientifically impactful results suggest novel therapeutic targets in disc metabolism and degeneration.


Sign in / Sign up

Export Citation Format

Share Document