fermentation parameters
Recently Published Documents


TOTAL DOCUMENTS

505
(FIVE YEARS 216)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Vol 2 (1) ◽  
pp. 73-101
Author(s):  
Laura M. Nyhan ◽  
Kieran M. Lynch ◽  
Aylin W. Sahin ◽  
Elke K. Arendt

Kombucha is a carbonated, slightly acidic beverage traditionally produced by the fermentation of sweetened tea by a symbiotic culture of bacteria and yeast (SCOBY). The microbial community of kombucha is a complex one, whose dynamics are still not fully understood; however, the emergence of culture-independent techniques has allowed a more comprehensive insight into kombucha microbiota. In recent times, advancements have been made towards the optimisation of the fermentation process, including the use of alternative substrates, defined starter cultures and the modification of fermentation parameters, with the aim of producing an innovative beverage that is improved in terms of its physiochemical, sensory and bioactive properties. The global kombucha market is rapidly increasing, with the rising popularity of the tea attributed in part to its purported health benefits, despite the lack of research in human subjects to substantiate such claims. Accordingly, the incidence of kombucha home-brewing has increased, meaning there is a requirement for individuals to recognise the potential hazards associated with fermentation and the relevant preventative measures to be undertaken to ensure the safe preparation of kombucha. The aim of this review is to provide an update regarding the current knowledge of kombucha production, microbiology, safety and marketing.


2022 ◽  
Vol 18 (1) ◽  
pp. e1009610
Author(s):  
Arno Strouwen ◽  
Bart M. Nicolaï ◽  
Peter Goos

Dynamic models based on non-linear differential equations are increasingly being used in many biological applications. Highly informative dynamic experiments are valuable for the identification of these dynamic models. The storage of fresh fruit and vegetables is one such application where dynamic experimentation is gaining momentum. In this paper, we construct optimal O2 and CO2 gas input profiles to estimate the respiration and fermentation kinetics of pear fruit. The optimal input profiles, however, depend on the true values of the respiration and fermentation parameters. Locally optimal design of input profiles, which uses a single initial guess for the parameters, is the traditional method to deal with this issue. This method, however, is very sensitive to the initial values selected for the model parameters. Therefore, we present a robust experimental design approach that can handle uncertainty on the model parameters.


Animals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 118
Author(s):  
Zhengwen Wang ◽  
Xiongxiong Li ◽  
Lingyun Zhang ◽  
Jianping Wu ◽  
Shengguo Zhao ◽  
...  

The objective of this experiment was to evaluate the effect of different EOC (0.1425% cobalt lactate + 1.13% oregano essential oil + 98.7275% carrier) levels on in vitro rumen fermentation and microbial changes. Six EOC levels (treatments: 0 mg·L−1, CON; 50 mg·L−1, EOC1; 100 mg·L−1, EOC2; 400 mg·L−1, EOC3; 800 mg·L−1, EOC4 and 1500 mg·L−1, EOC5) were selected to be used to in vitro incubation. The in vitro dry matter digestibility (IVDMD), in vitro neutral detergent fiber digestibility (IVNDFD), in vitro acid detergent fiber digestibility (IVNDFD), pH, ammonia-nitrogen (NH3-N) concentration, total volatile fatty acid (TVFA) concentration and microbial protein (MCP) concentration were measured after 48 h incubation, after which the groups with significant nutrient digestibility and fermentation parameters were subjected to 16S rRNA sequencing. The results showed that the total gas production (GP) of the EOC5 group was higher than that of the other groups after 12 h of in vitro incubation. TVFA, NH3-N and MCP concentrations were also shown to be higher in group EOC5 than those in other groups (p < 0.05), while NH3-N and MCP concentrations in the EOC2 group were lower than those in other groups significantly (p < 0.05). The molar ratio of acetic acid decreased while the molar ratio of propionic acid increased after the addition of EOC. 16S rRNA sequencing revealed that the rumen microbiota was altered in response to adding EOC, especially for the EOC5 treatment, with firmicutes shown to be the most abundant (43.1%). The relative abundance of Rikenellaceae_RC9_gut_group was significantly lower, while the relative abundance of uncultured_bacterium_f_Muribaculaceae and Succiniclasticum was significantly higher in the EOC5 group than those in other groups (p < 0.05). Comprehensive analysis showed that EOC (1500 mg·L−1) could significantly increase gas production, alter sheep rumen fermentation parameters and microbiota composition.


Meat Science ◽  
2022 ◽  
Vol 183 ◽  
pp. 108670
Author(s):  
Carlos Arce-Recinos ◽  
Jesús Alberto Ramos-Juárez ◽  
Aleida Selene Hernández-Cázares ◽  
María Magdalena Crosby-Galván ◽  
Baldomero Alarcón-Zúñiga ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 1058-1066
Author(s):  
Diofanor Acevedo ◽  
Piedad M. Montero Castillo ◽  
José Jaimes Morales

Studying the fermentation parameters of "Suero Costeño" was the focus of this research, considered a traditional product in the Caribbean region of Colombia, inoculated with lactic acid bacteria Lactococcus lactis subsp. Lactis (ATCC29146) and Lactobacillus paracasei subsp. paracasei (ATCC 334). It was found that the percentage of lactose decreased progressively during the hours of fermentation, with a minimum lactose value of 3.1% at 15 h for the samples of Suero Costeño with L. lactis, while for L. paracasei the percentage of lactose was 3.4%. L. paracasei the percentage of lactose was 3.4%; on the other hand, the pH, which is a limiting factor in the fermentation process, was reported to have a considerable reduction in the samples with L. lactis in comparison with L. paracasei, at the end of the fermentation process at 15 h, with values of 4.3 and 4.5, respectively. Finally, the sensory evaluation allowed establishing that the Suero Costeño with L. lactis obtained similar values to that produced in a traditional way, and therefore its use can be recommended in this type of dairy products as a starter culture.


2021 ◽  
Vol 8 (1) ◽  
pp. 17
Author(s):  
Hongying He ◽  
Yuchen Yan ◽  
Dan Dong ◽  
Yihong Bao ◽  
Ting Luo ◽  
...  

Our previous study isolated a novel Issatchenkia terricola WJL-G4, which exhibited a potent capability of reducing citric acid. In the current study, I. terricola WJL-G4 was applied to decrease the content of citric acid in red raspberry juice, followed by the red raspberry wine preparation by Saccharomyces cerevisiae fermentation, aiming to investigate the influence of I. terricola WJL-G4 on the physicochemical properties, organic acids, phenolic compounds and antioxidant activities during red raspberry wine processing. The results showed that after being treated with I. terricola WJL-G4, the citric acid contents in red raspberry juice decreased from 19.14 ± 0.09 to 6.62 ± 0.14 g/L, which was further declined to 5.59 ± 0.22 g/L after S. cerevisiae fermentation. Parameters related to CIELab color space, including L*, a*, b*, h°, and ∆E* exhibited the highest levels in samples after I. terricola WJL-G4 fermentation. Compared to the red raspberry wine pretreated without deacidification (RJO-SC), wine pretreated by I. terricola WJL-G4 (RJIT-SC) exhibited significantly decreased contents of gallic acid, cryptochlorogenic acid, and arbutin, while significantly increased contents of caffeic acid, sinapic acid, raspberry ketone, quercitrin, quercetin, baicalein, and rutin. Furthermore, the antioxidant activities including DPPH· and ABTS+· radical scavenging were enhanced in RJIT-SC group as compared to RJO-SC. This work revealed that I. terricola WJL-G4 had a great potential in red raspberry wine fermentation.


Author(s):  
Francine M Ciriaco ◽  
Darren D Henry ◽  
Tessa M Schulmeister ◽  
Carla D Sanford ◽  
Luara B Canal ◽  
...  

Abstract To determine the effect of CaO treated Pensacola bahiagrass (Paspalum notatum) hay on intake, ruminal fermentation parameters, and apparent total tract digestibility of nutrients, 9 ruminally cannulated Angus-crossbred steers were used in a triplicated 3 × 3 Latin square design. Steers had ad libitum access to either: 1) untreated dry hay (DH;  n = 8); 2) hay at 50% DM treated with 8.9% CaCO3 [dry matter (DM) basis; CC; n = 9]; or 3) hay at 50% DM treated with 5% CaO (DM basis; CO; n = 8). Water was added to reach 50% DM in the CC and CO diets. Ruminal fluid and blood samples were collected every 3 h for 24 h. Ruminal fluid was analyzed for pH, volatile fatty acids (VFA), and ammonia-nitrogen (NH3-N). Blood was analyzed for plasma urea nitrogen (PUN). Hay and fecal samples were collected for 4 d, 4 times daily for hay and twice daily for feces, to determine apparent total-tract digestibility of nutrients. The hay provided to steers during the digestibility period was analyzed for in vitro organic matter digestibility (IVOMD) for 48h. Data were analyzed as repeated measures for blood and ruminal fermentation parameters. Total DM intake was not affected (P ≥ 0.674) by treatment. A treatment effect (P &lt; 0.001) was observed for average ruminal pH, where steers consuming CO had the greatest pH (P &lt; 0.001). Ruminal concentration of NH3-N tended (P = 0.059) to be reduced in steers consuming CO. There was a treatment × time interaction (P = 0.023) on concentrations of PUN, where at 3 h DH and CO were lesser than CC (P ≤ 0.050) and at 21 h DH was lesser than CC (P = 0.020). Total VFA, acetate, propionate, butyrate, branched-chain VFA, and valerate concentrations were affected by treatment (P ≤ 0.035), where a reduction (P ≤ 0.034) occurred in steers consuming CO. No treatment differences were observed for total-tract digestibility of DM (P = 0.186), organic matter (P = 0.169), or crude protein (P = 0.152); however, steers consuming DH had greater neutral detergent fiber (P = 0.038) than CC and tended to be greater than CO (P = 0.082). The CO hay had greater (P = 0.005) IVOMD compared with DH and tended (P = 0.100) to be greater than CC. Bahiagrass hay treated with CaO may reduce ruminal fermentation, as indicated by decreased total VFA concentration without altering DM intake. The addition of CaO did not improve the digestibility of bahiagrass hay in vivo; however, in vitro results are contradictory and warrant further elucidation.


2021 ◽  

Abstract Aroma components of wines play an important role in the sensory quality of wines. In our paper we investigate the effect of commercially available yeast nutrients under different fermentation parameters. Caproic acid, caprylic acid, capric acid, and different fatty acid esters were used as markers of the alcoholic fermentation process. The optimal temperature for the fermentation of different white wines was at 15–16 °C, in the case of examined wines lower concentrations of fatty acids and fatty acid esters were found at this temperature. At 25–26 °C fermentation temperature very high concentrations of fatty acids and fatty acid esters were detected. Applying different nitrogen-containing wine additives we managed to achieve better aroma profiles for white wines even using musts of lower quality.


Sign in / Sign up

Export Citation Format

Share Document