barrier option pricing
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 3)

Author(s):  
Luca Vincenzo Ballestra

AbstractWe show that the performances of the finite difference method for double barrier option pricing can be strongly enhanced by applying both a repeated Richardson extrapolation technique and a mesh optimization procedure. In particular, first we construct a space mesh that is uniform and aligned with the discontinuity points of the solution being sought. This is accomplished by means of a suitable transformation of coordinates, which involves some parameters that are implicitly defined and whose existence and uniqueness is theoretically established. Then, a finite difference scheme employing repeated Richardson extrapolation in both space and time is developed. The overall approach exhibits high efficacy: barrier option prices can be computed with accuracy close to the machine precision in less than one second. The numerical simulations also reveal that the improvement over existing methods is due to the combination of the mesh optimization and the repeated Richardson extrapolation.


2020 ◽  
Vol 140 ◽  
pp. 110178 ◽  
Author(s):  
Rong Gao ◽  
Wei Wu ◽  
Chao Lang ◽  
Liying Lang

2020 ◽  
Vol 23 (01) ◽  
pp. 2050005
Author(s):  
ANDRÉ CATALÃO ◽  
ROGÉRIO ROSENFELD

In this work, we present an analytical model, based on the path-integral formalism of statistical mechanics, for pricing options using first-passage time problems involving both fixed and deterministically moving absorbing barriers under possibly non-Gaussian distributions of the underlying object. We adapt to our problem a model originally proposed by De Simone et al. (2011) to describe the formation of galaxies in the universe, which uses cumulant expansions in terms of the Gaussian distribution, and we generalize it to take into account drift and cumulants of orders higher than three. From the probability density function, we obtain an analytical pricing model, not only for vanilla options (thus removing the need of volatility smile inherent to the Black & Scholes (1973) model), but also for fixed or deterministically moving barrier options. Market prices of vanilla options are used to calibrate the model, and barrier option pricing arising from the model is compared to the price resulted from the relative entropy model.


Sign in / Sign up

Export Citation Format

Share Document