stem diameter growth
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 11 (24) ◽  
pp. 11998
Author(s):  
Augusta Costa ◽  
Paolo Cherubini

Cork-ring widths have been extensively used in dendroecological studies assessing the relationship between cork growth patterns and climate (precipitation and temperature). Generally, cork growth is assumed as a proxy for stem diameter growth to address cork oak (Quercus suber L.) growth sensitivity to climate and cork yield modeling. Cork growth represents a large part of stem radial increment in this species due to the enhanced activity of phellogen when compared to the cambium activity; thus, similar inter-annual variations of cork-ring widths and tree diameter growth might be expected. However, so far, the influence of rainfall and temperature on stem diameter growth has scarcely been addressed; moreover, it is still not clear whether tree size relates, and in what way, to the variations in radial growth of cork and stem diameter and whether these reflect (proportional) quantitative variations in stem basal area growth. In this study, we computed the annual growth of cork and of stem diameter at breast-height in data series of 47 trees, from 2000 to 2012, corresponding to a full cork production cycle. Results showed a tight link between cork-ring width and stem diameter growth indices. However, while cork growth strongly correlated with climate conditions in autumn–winter prior to the growing season, stem diameter growth correlated with climate conditions of the current growing season, and, more importantly, it was tree size-related. The extrapolation from cork-ring increments to stem basal area growth is likely to progressively underestimate tree growth and biomass increment in larger cork oaks and to further bias it due to climate change effects in the Mediterranean region.


2021 ◽  
Vol 51 (5) ◽  
pp. 101-107
Author(s):  
S. F. Usoltsev ◽  
R. V. Rybakov ◽  
G. V. Nestyak ◽  
Yu. V. Goncharenko

The process of daily variation in tomato stem diameter is examined in order to justify the use of this parameter to control drip irrigation. Changes in the size of individual plant parts depend on the provision of water, light, heat and nutrients to the production process. Therefore, such plant parameters as leaf temperature, xylem flow rate, fruit and stem diameter can be indicators of availability of necessary resources. The research was carried out in Novosibirsk region in June - September 2020. The value of the range of daily variations in stem diameter, which has a close relationship to relative soil moisture, was used as an indicator of plant water stress. The source of the information is the results of measurements of soil moisture and stem diameter growth of tomato. Experiments to assess the effect of water deficit on stem parameters were carried out on a plant set out in the open ground separately from the rest. Artificial water stress conditions were created by watering once a week. Data were collected using a PM-11z phytomonitor, soil moisture and stem diameter growth sensors. The results of measurements were processed in Microsoft Office Excel program. It was found that the range of daily fluctuations of stem diameter growth depends on moisture availability. When soil moisture is below 30%, the plant experiences water stress and the range of stem diameter fluctuations increases. The maximum growth in stem diameter was observed at 7-10 a.m. and the minimum at 13-15 p.m. local time. The difference between the maximum and minimum of the daily stem diameter increase characterizes the range of the daily stem diameter difference, which correlates closely with soil moisture. The correlation coefficient between them is 0.72. The limit for the daily stem diameter difference is 0.025 mm at 30% soil moisture. If the actual value of this parameter exceeds the limit value, the irrigation system can be activated. The implementation of this approach makes it possible to automate the irrigation process and to take into account the indicator that signals water stress of the plant.


2021 ◽  
Vol 914 (1) ◽  
pp. 012015
Author(s):  
Mashudi ◽  
D Setiadi ◽  
S Pudjiono ◽  
M Susanto ◽  
L Baskorowati ◽  
...  

Abstract Alstonia angustiloba is a local tree species that have potential for community forest plantation; therefore, it is important to provide improved seeds. This study aimed to determine the diversity of growth, estimate the value of heritability, and the genetic correlation of the 4-years-old A. angustiloba progeny test. Randomized Completely Block Design with two factors (population and family) were used in this study. In this study, families are nested in the population. The population factors consisted of 4 levels, and family factors consisted of 43 families. The analysis of variance showed that height and stem diameter growth were significantly different between populations and families at four years old. The best height and stem diameter growth at the population level was obtained from the Pendopo population, 4.45 m and 7.71 cm, respectively. At the family level, the best height growth was obtained from 9 families (4.46-5.06 m), and the best stem diameter growth was obtained from 11 families (7.48-8.72 cm). The estimated individual heritability value for height was 0.41, and stem diameter was 0.23. Estimated family heritability values were 0.66 for height and 0.50 for stem diameter. The genetic correlation between height and stem diameter was 0.97.


2021 ◽  
Vol 22 (10) ◽  
Author(s):  
Frisilia Sopacua ◽  
NURHENI WIJAYANTO ◽  
DESTA WIRNAS

Abstract. Sopacua F, Wijayanto N, Wirnas D. 2021. Growth of three types of sengon (Paraserianthes spp.) in varying planting spaces in agroforestry system. Biodiversitas 22: 4423-4430. Sengon (Paraserianthes spp.) is a fast-growing tree species that is commonly cultivated in the agroforestry system by communities in Indonesia, mainly on Java Island. Among several types of sengon, Solomon sengon is currently gaining popularity due to the fast growth in height and stem diameter. Nonetheless, the spacing layout of selected sengon types is unclear, including Solomon sengon, which yields more optimal growth. This study aimed to examine the growth of three sengon types (i.e., Solomon F2, Solomon F1, and local Kendal) in three spacing patterns, namely 1.5x1.5m, 3x1.5m, and 3x3m. This research was conducted from October 2019 to January 2020 (three months) in the Cikabayan Forest, Bogor Agricultural University, Bogor, West Java. The parameters of sengon growth observed were plant height, height growth rate, stem diameter, stem diameter growth rate, tree volume, and canopy area. Data analysis was performed using ANOVA and continued with Duncan's. The results showed that all types of sengon had optimal growth in the agroforestry system at various spacings. The growth of Solomon F2 adapted well to denser spacings (1.5x1.5m and 1.5x3m) with the highest averages in plant height, stem diameter, volume, and canopy area of ??10.50 m, 8.65 cm, 0.36 m3, and 5.39 m2. Local Kendal had optimal growth at a wider spacing (3x3m) with the highest average stem diameter, volume, and canopy area of ??8.96 cm, 0.043 m3, and 1063 m2. While Solomon F1 adapted well to the three spacings with the highest average in plant height, the growth rate of plant height, stem diameter, volume, and canopy area of ??10.05 m, 1.54 m, 8.59 cm, 0.042 m2, and 2075.30 m2. In general, it can be concluded that the Solomon F1 sengon can adapt well to narrow distances or wide distances. While Solomon F2 is more recommended to be planted at a narrower distance and Kendal local sengon is more recommended to be planted at a wider distance to get optimal growth.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 494 ◽  
Author(s):  
Yanfang Wan ◽  
Pengtao Yu ◽  
Xiaoqing Li ◽  
Yanhui Wang ◽  
Bin Wang ◽  
...  

It is important to develop a better understanding of the climatic and soil factors controlling the stem diameter growth of Qinghai spruce (Picea crassifolia Kom.) forest. The results will provide basic information for the scientific prediction of trends in the future development of forests. To explain the seasonal pattern of stem diameter growth of Qinghai spruce and its response to environmental factors in the Qilian Mountains, northwest China, the stem diameter changes of 10 sample trees with different sizes and soil and meteorological conditions were observed from May to October of 2015 and 2016. Our results showed that the growth initiation of the stem diameter of Qinghai spruce was on approximately 25 May 2015 and 20 June 2016, and stem diameter growth commenced when the average air and soil temperatures were more than 10 °C and 3 °C, respectively. The cessation of growth occurred on approximately 21 August 2015 and 14 September 2016, and it was probably controlled by soil moisture. Stem diameter growth began earlier, ended later, and exhibited a larger growth rate as tree size increased. For the period May–October, the cumulative stem diameter growth of individual trees was 400 and 380 μm in 2015 and 2016, respectively. The cumulative stem diameter growth had a clear seasonal pattern, which could be divided into three growth stages, i.e., the beginning (from day of year (DOY) 120 to the timing of growth initiation with the daily growth rate of less than 2 μm·day−1), rapid growth (from the timing of growth initiation to the timing of growth cessation with the daily growth rate of more than 2 μm·day−1), and ending stages (from the timing of growth cessation to DOY 300 with the daily growth rate of less than 2 μm·day−1). The correlation of daily stem growth and environmental factors varied with growth stages; however, temperature, vapor pressure deficit (VPD), and soil moisture were the key factors controlling daily stem diameter growth. Overall, these results indicated that the seasonal variation in stem growth was regulated by soil and climatic triggers. Consequently, changes in climate seasonality may have considerable effects on the seasonal patterns of both stem growth and tree growth.


AoB Plants ◽  
2019 ◽  
Vol 11 (3) ◽  
Author(s):  
E F Gray ◽  
I J Wright ◽  
D S Falster ◽  
A S D Eller ◽  
C E R Lehmann ◽  
...  

Abstract Plant growth rates drive ecosystem productivity and are a central element of plant ecological strategies. For seedlings grown under controlled conditions, a large literature has firmly identified the functional traits that drive interspecific variation in growth rate. For adult plants, the corresponding knowledge is surprisingly poorly understood. Until recently it was widely assumed that the key trait drivers would be the same (e.g. specific leaf area, or SLA), but an increasing number of papers has demonstrated this not to be the case, or not generally so. New theory has provided a prospective basis for understanding these discrepancies. Here we quantified relationships between stem diameter growth rates and functional traits of adult woody plants for 41 species in an Australian tropical rainforest. From various cost-benefit considerations, core predictions included that: (i) photosynthetic rate would be positively related to growth rate; (ii) SLA would be unrelated to growth rate (unlike in seedlings where it is positively related to growth); (iii) wood density would be negatively related to growth rate; and (iv) leaf mass:sapwood mass ratio (LM:SM) in branches (analogous to a benefit:cost ratio) would be positively related to growth rate. All our predictions found support, particularly those for LM:SM and wood density; photosynthetic rate was more weakly related to stem diameter growth rates. Specific leaf area was convincingly correlated to growth rate, in fact negatively. Together, SLA, wood density and LM:SM accounted for 52 % of variation in growth rate among these 41 species, with each trait contributing roughly similar explanatory power. That low SLA species can achieve faster growth rates than high SLA species was an unexpected result but, as it turns out, not without precedent, and easily understood via cost-benefit theory that considers whole-plant allocation to different tissue types. Branch-scale leaf:sapwood ratio holds promise as an easily measurable variable that may help to understand growth rate variation. Using cost-benefit approaches teamed with combinations of leaf, wood and allometric variables may provide a path towards a more complete understanding of growth rates under field conditions.


2018 ◽  
Vol 44 (2) ◽  
pp. 339-350 ◽  
Author(s):  
Ian J. Wright ◽  
Julia Cooke ◽  
Lucas A. Cernusak ◽  
Lindsay B. Hutley ◽  
Marina C. Scalon ◽  
...  

2011 ◽  
Vol 8 (8) ◽  
pp. 2179-2194 ◽  
Author(s):  
B. Schuldt ◽  
C. Leuschner ◽  
V. Horna ◽  
G. Moser ◽  
M. Köhler ◽  
...  

Abstract. A large-scale replicated throughfall exclusion experiment was conducted in a pre-montane perhumid rainforest in Sulawesi (Indonesia) exposing the trees for two years to pronounced soil desiccation. The lack of regularly occurring dry periods and shallow rooting patterns distinguish this experiment from similar experiments conducted in the Amazonian rainforest. We tested the hypotheses that a tree's sun canopy is more affected by soil drought than its shade crown, making tall trees particularly vulnerable even under a perhumid climate, and that extended drought periods stimulate an acclimation in the hydraulic system of the sun canopy. In the abundant and tall tree species Castanopsis acuminatissima (Fagaceae), we compared 31 morphological, anatomical, hydraulic and chemical variables of leaves, branches and the stem together with stem diameter growth between drought and control plots. There was no evidence of canopy dieback. However, the drought treatment led to a 30 % reduction in sapwood-specific hydraulic conductivity of sun canopy branches, possibly caused by the formation of smaller vessels and/or vessel filling by tyloses. Drought caused an increase in leaf size, but a decrease in leaf number, and a reduction in foliar calcium content. The δ13C and δ18O signatures of sun canopy leaves gave no indication of a permanent down-regulation of stomatal conductance during the drought, indicating that pre-senescent leaf shedding may have improved the water status of the remaining leaves. Annual stem diameter growth decreased during the drought, while the density of wood in the recently produced xylem increased in both the stem and sun canopy branches (marginally significant). The sun canopy showed a more pronounced drought response than the shade crown indicating that tall trees with a large sun canopy are more vulnerable to drought stress. We conclude that the extended drought prompted a number of medium- to long-term responses in the leaves, branches and the trunk, which may have reduced drought susceptibility. However, unlike a natural drought, our drought simulation experiment was carried out under conditions of high humidity, which may have dampened drought induced damages.


2010 ◽  
Vol 36 (1) ◽  
pp. 35-40
Author(s):  
Palle Kristoffersen ◽  
Oliver Bühler ◽  
Søren Larsen ◽  
Thomas Randrup

This tree establishment study investigates the effect of weed control and pruning treatments on stem and branch diameter increment of newly planted broad-leaved lime (Tilia platyphyllos ‘Rubra’) roadside trees. Weed control significantly increased stem circumference four years after establishment by 3.6 cm (1.4 in) from 24.5 cm (9.7 in, untreated control) to 28.1 cm (11.1 in). In terms of Danish nursery sales prices, this corresponds to an increase of tree cash value of 1201 DKK (160.90 €, 235.40 US$) per tree. Calculating with 400 DKK (53.60 €, 78.40 US$) as cost for contract weeding per hour, this corresponds to 0.75 hours per tree per year for a period of four years. In addition to weed control treatments, trees were pruned at establishment, two years after establishment, or at both times. None of the pruning treatments affected stem diameter growth, but branch diameter and branch:stem diameter ratio were significantly reduced by all pruning treatments. Branch diameter ranged from 40.1 mm (1.6 in) on unpruned trees to 34.6 mm (1.4 in on trees pruned both times. Branch:stem diameter ratio ranged from 0.54 on unpruned trees to 0.49 on trees pruned both times. In consequence, weed control is recommended as a strong management practice. Mild pruning is also considered advisable, if structural crown problems can be avoided at an early stage, and if the tree has to be prepared for later pruning operations.


Sign in / Sign up

Export Citation Format

Share Document