peptide conjugates
Recently Published Documents


TOTAL DOCUMENTS

695
(FIVE YEARS 135)

H-INDEX

54
(FIVE YEARS 7)

Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Marta Kowalska ◽  
Dominik Popiel ◽  
Martyna Walter ◽  
Remigiusz Bąchor ◽  
Monika Biernat ◽  
...  

Analysis of peptide biomarkers of pathological states of the organism is often a serious challenge, due to a very complex composition of the cell and insufficient sensitivity of the current analytical methods (including mass spectrometry). One of the possible ways to overcome this problem is sample enrichment by capturing the selected components using a specific solid support. Another option is increasing the detectability of the desired compound by its selective tagging. Appropriately modified and immobilized peptides can be used for these purposes. In addition, they find application in studying the specificity and activity of proteolytic enzymes. Immobilized heterocyclic peptide conjugates may serve as metal ligands, to form complexes used as catalysts or analytical markers. In this review, we describe various applications of immobilized peptides, including selective capturing of cysteine-containing peptides, tagging of the carbonyl compounds to increase the sensitivity of their detection, enrichment of biological samples in deoxyfructosylated peptides, and fishing out of tyrosine–containing peptides by the formation of azo bond. Moreover, the use of the one-bead-one-compound peptide library for the analysis of substrate specificity and activity of caspases is described. Furthermore, the evolution of immobilization from the solid support used in peptide synthesis to nanocarriers is presented. Taken together, the examples presented here demonstrate immobilized peptides as a multifunctional tool, which can be successfully used to solve multiple analytical problems.


2022 ◽  
Vol 12 (1) ◽  
pp. 515
Author(s):  
Lucy R. Hart ◽  
Charlotta G. Lebedenko ◽  
Saige M. Mitchell ◽  
Rachel E. Daso ◽  
Ipsita A. Banerjee

In this work, in silico studies were carried out for the design of diterpene and polyphenol-peptide conjugates to potentially target over-expressed breast tumor cell receptors. Four point mutations were induced into the known tumor-targeting peptide sequence YHWYGYTPQN at positions 1, 2, 8 and 10, resulting in four mutated peptides. Each peptide was separately conjugated with either chlorogenate, carnosate, gallate, or rosmarinate given their known anti-tumor activities, creating dual targeting compounds. Molecular docking studies were conducted with the epidermal growth factor receptor (EGFR), to which the original peptide sequence is known to bind, as well as the estrogen receptor (ERα) and peroxisome proliferator-activated receptor (PPARα) using both Autodock Vina and FireDock. Based on docking results, peptide conjugates and peptides were selected and subjected to molecular dynamics simulations. MMGBSA calculations were used to further probe the binding energies. ADME studies revealed that the compounds were not CYP substrates, though most were Pgp substrates. Additionally, most of the peptides and conjugates showed MDCK permeability. Our results indicated that several of the peptide conjugates enhanced binding interactions with the receptors and resulted in stable receptor-ligand complexes; Furthermore, they may successfully target ERα and PPARα in addition to EGFR and may be further explored for synthesis and biological studies for therapeutic applications.


2022 ◽  
Author(s):  
Maeva Coste ◽  
Esteban Suárez Picado ◽  
Sébastien Ulrich

Supramolecular polymers are self-assembled materials displaying adaptive and responsive “life-like” behaviour which are often made of aromatic compounds capable of engaging in π-π interactions to form larger assemblies. Major advances...


2021 ◽  
Author(s):  
Jessica ANDRIES ◽  
Wildriss VIRANAICKEN ◽  
Colette CORDONIN ◽  
Cynthia PLANESSE ◽  
Bénédicte ROQUEBERT ◽  
...  

Abstract The newly identified coronavirus SARS-CoV-2 is responsible for the worldwide pandemic COVID-19. Considerable efforts have been made for the development of effective vaccine strategies against COVID-19. The SARS-CoV-2 spike protein has been assigned as major antigen candidate for the development of COVID-19 vaccines. The COVID-19 mRNA BNT162b2 vaccine (comirnaty, Pfizer/BioNTech) is a lipid nanoparticle-encapsulated mRNA encoding a full-length and prefusion-stabilized SARS-CoV-2 spike protein. In the present study, synthetic peptide-based ELISA assays were performed to identify linear B cell epitopes that contribute to elicitation of antibody response in vaccinated individuals with comirnaty. The synthetic S2P6 peptide containing the spike residues 1138/1169 and to a lesser extent, the synthetic S1P4 peptide containing the spike residues 616/644 were recognized by the immune sera from comirnaty recipients but not COVID-19 recovered patients. The S2P6 peptide has been identified as immunogenic peptide in adult BALB/c mice that received protein-peptide conjugates in a prime-boost schedule. Based on our data, we propose that the synthetic S2P6 peptide and to a lesser extent the synthetic S1P4 peptide, would be of interest to measure the dynamic of antibody response to comirnaty vaccine. The synthetic S2P6 peptide is a SARS-CoV-2 spike peptide candidate for the development of peptide-based vaccines against COVID-19.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6964
Author(s):  
Monika Kijewska ◽  
Dorota Gąszczyk ◽  
Remigiusz Bąchor ◽  
Piotr Stefanowicz ◽  
Zbigniew Szewczuk

Peptide modification by a quaternary ammonium group containing a permanent positive charge is a promising method of increasing the ionization efficiency of the analyzed compounds, making ultra-sensitive detection even at the attomolar level possible. Charge-derivatized peptides may undergo both charge remote (ChR) and charge-directed (ChD) fragmentation. A series of model peptide conjugates derivatized with N,N,N-triethyloammonium (TEA), 1-azoniabicyclo[2.2.2]octane (ABCO), 2,4,6-triphenylopyridinium (TPP) and tris(2,4,6-trimetoxyphenylo)phosphonium (TMPP) groups were analyzed by their fragmentation pathways both in collision-induced dissociation (CID) and electron-capture dissociation (ECD) mode. The effect of the fixed-charge tag type and peptide sequence on the fragmentation pathways was investigated. We found that the aspartic acid effect plays a crucial role in the CID fragmentation of TPP and TEA peptide conjugates whereas it was not resolved for the peptides derivatized with the phosphonium group. ECD spectra are mostly dominated by cn ions. ECD fragmentation of TMPP-modified peptides results in the formation of intense fragments derived from this fixed-charge tag, which may serve as reporter ion.


Author(s):  
Jorge Losada Méndez ◽  
Francisca Palomares ◽  
Francisca Gómez ◽  
Pedro Ramírez-López ◽  
Javier Ramos-Soriano ◽  
...  

2021 ◽  
Vol 274 ◽  
pp. 118662
Author(s):  
Yang Zhou ◽  
Stella P. Petrova ◽  
Kevin J. Edgar

Sign in / Sign up

Export Citation Format

Share Document