single species model
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 23)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Kelsey Marcinko

Abstract Climate change has created new and evolving environmental conditions, impacting all species, including hosts and parasitoids. I therefore present integrodifference equation (IDE) models of host--parasitoid systems to model population dynamics in the context of climate-driven shifts in habitats. I describe and analyze two IDE models of host--parasitoid systems to determine criteria for coexistence of the host and parasitoid. Specifically, I determine the critical habitat speed, beyond which the parasitoid cannot survive. By comparing the results from two IDE models, I investigate the impacts of assumptions that reduce the system to a single-species model. I also compare critical speeds predicted by a spatially-implicit difference-equation model with critical speeds determined from numerical simulations of the IDE system. The spatially-implicit model uses approximations for the dominant eigenvalue of an integral operator. The classic methods to approximate the dominant eigenvalue for IDE systems do not perform well for asymmetric kernels, including those that are present in shifting-habitat IDE models. Therefore, I compare several methods for approximating dominant eigenvalues and ultimately conclude that geometric symmetrization and iterated geometric symmetrization give the best estimates of the parasitoid critical speed.


2021 ◽  
Vol 2021 (10) ◽  
pp. 103403
Author(s):  
Almaz Tesfay ◽  
Daniel Tesfay ◽  
Shenglan Yuan ◽  
James Brannan ◽  
Jinqiao Duan

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Guanghai Song

AbstractThe present paper puts forward and probes a stochastic single-species model with predation effect in a polluted environment. We propose a threshold between extermination and weak persistence of the species and provide sufficient conditions for the stochastic persistence of the species. In addition, we evaluate the growth rates of the solution. Theoretical findings are expounded by some numerical simulations.


2021 ◽  
Vol 7 ◽  
Author(s):  
Daniel Howell ◽  
Amy M. Schueller ◽  
Jacob W. Bentley ◽  
Andre Buchheister ◽  
David Chagaris ◽  
...  

Although many countries have formally committed to Ecosystem-Based Fisheries Management (EBFM), actual progress toward these goals has been slow. This paper presents two independent case studies that have combined strategic advice from ecosystem modeling with the tactical advice of single-species assessment models to provide practical ecosystem-based management advice. With this approach, stock status, reference points, and initial target F are computed from a single-species model, then an ecosystem model rescales the target F according to ecosystem indicators without crossing pre-calculated single-species precautionary limits. Finally, the single-species model computes the quota advice from the rescaled target F, termed here Feco. Such a methodology incorporates both the detailed population reconstructions of the single-species model and the broader ecosystem perspective from ecosystem-based modeling, and fits into existing management schemes. The advocated method has arisen from independent work on EBFM in two international fisheries management systems: (1) Atlantic menhaden in the United States and (2) the multi species fisheries of the Irish Sea, in the Celtic Seas ecoregion. In the Atlantic menhaden example, the objective was to develop ecological reference points (ERPs) that account for the effect of menhaden harvest on predator populations and the tradeoffs associated with forage fish management. In the Irish Sea, the objective was to account for ecosystem variability when setting quotas for the individual target species. These two exercises were aimed at different management needs, but both arrived at a process of adjusting the target F used within the current single-species management. Although the approach has limitations, it represents a practical step toward EBFM, which can be adapted to a range of ecosystem objectives and applied within current management systems.


Sign in / Sign up

Export Citation Format

Share Document