catch bonds
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 16)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Keith J. Mickolajczyk ◽  
Paul Dominic B. Olinares ◽  
Brian T. Chait ◽  
Shixin Liu ◽  
Tarun M. Kapoor

ABSTRACTCatch bonds are a form of mechanoregulation wherein protein-ligand interactions are strengthened by the application of dissociative tension. Currently, the best-characterized examples of catch bonds are between single protein-ligand pairs. The essential AAA (ATPase associated with diverse cellular activities) mechanoenzyme Mdn1 drives two separate steps in ribosome biogenesis, using its MIDAS domain to extract the ubiquitin-like (UBL) domain-containing proteins Rsa4 and Ytm1 from ribosomal precursors. However, it must subsequently release these assembly factors to reinitiate the enzymatic cycle. The mechanism underlying MIDAS-UBL switching between strongly- and weakly-bound states is unknown. Here, we use single-molecule optical tweezers to investigate the force-dependence of MIDAS-UBL binding. Parallel experiments with Rsa4 and Ytm1 show that forces up to ~4 pN, matching the magnitude of force produced by AAA proteins similar to Mdn1, enhance the MIDAS domain binding lifetime up to tenfold, and higher forces accelerate dissociation. Together, our studies indicate that Mdn1’s MIDAS domain forms catch bonds with more than one UBL-substrate, and provide insights into how mechanoregulation may contribute to the Mdn1 enzymatic cycle during ribosome biogenesis.


2021 ◽  
Vol 120 (3) ◽  
pp. 90a
Author(s):  
Philip C. Nelson
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kerim C. Dansuk ◽  
Sinan Keten

AbstractProtein–ligand complexes with catch bonds exhibit prolonged lifetimes when subject to tensile force, which is a desirable yet elusive attribute for man-made nanoparticle interfaces and assemblies. Most designs proposed so far rely on macromolecular linkers with complicated folds rather than particles exhibiting simple dynamic shapes. Here, we establish a scissor-type X-shaped particle design for achieving intrinsic catch bonding ability with tunable force-enhanced lifetimes under thermal excitations. Molecular dynamics simulations are carried out to illustrate equilibrium self-assembly and force-enhanced bond lifetime of dimers and fibers facilitated by secondary interactions that form under tensile force. The non-monotonic force dependence of the fiber breaking kinetics is well-estimated by an analytical model. Our design concepts for shape-changing particles illuminates a path towards novel nanoparticle or colloidal assemblies that have the passive ability to tune the strength of their interfaces with applied force, setting the stage for self-assembling materials with novel mechanical functions and rheological properties.


Author(s):  
Marion Mathelié-Guinlet ◽  
Felipe Viela ◽  
David Alsteens ◽  
Yves F. Dufrêne

2020 ◽  
Vol 8 ◽  
Author(s):  
Martijn van Galen ◽  
Jasper van der Gucht ◽  
Joris Sprakel

2020 ◽  
Author(s):  
Yuval Mulla ◽  
Mario J Avellaneda ◽  
Antoine Roland ◽  
Lucia Baldauf ◽  
Sander J Tans ◽  
...  

Molecular catch bonds are ubiquitous in biology and well-studied in the context of leukocyte extravasion1, cellular mechanosensing2,3, and urinary tract infection4. Unlike normal (slip) bonds, catch bonds strengthen under tension. The current paradigm is that this remarkable ability enables cells to increase their adhesion in fast fluid flows1,4, and hence provides ‘strength-on-demand’. Recently, cytoskeletal crosslinkers have been discovered that also display catch bonding5–8. It has been suggested that they strengthen cells, following the strength-on-demand paradigm9,10. However, catch bonds tend to be weaker compared to regular (slip) bonds because they have cryptic binding sites that are often inactive11–13. Therefore, the role of catch bonding in the cytoskeleton remains unclear. Here we reconstitute cytoskeletal actin networks to show that catch bonds render them both stronger and more deformable than slip bonds, even though the bonds themselves are weaker. We develop a model to show that weak binding allows the catch bonds to mitigate crack initiation by moving from low- to high-tension areas in response to mechanical loading. By contrast, slip bonds remain trapped in stress-free areas. We therefore propose that the mechanism of catch bonding is typified by dissociation-on-demand rather than strength-on-demand. Dissociation-on-demand can explain how both cytolinkers5–8,10,14,15 and adhesins1,2,4,12,16–20 exploit continuous redistribution to combine mechanical strength with the adaptability required for movement and proliferation21. Our findings provide a mechanistic understanding of diseases where catch bonding is compromised11,12 such as kidney focal segmental glomerulosclerosis22,23, caused by the α-actinin-4 mutant studied here. Moreover, catch bonds provide a route towards creating life-like materials that combine strength with deformability24.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Nicholas P. Stone ◽  
Gabriel Demo ◽  
Emily Agnello ◽  
Brian A. Kelch

Abstract The capsids of double-stranded DNA viruses protect the viral genome from the harsh extracellular environment, while maintaining stability against the high internal pressure of packaged DNA. To elucidate how capsids maintain stability in an extreme environment, we use cryoelectron microscopy to determine the capsid structure of thermostable phage P74-26 to 2.8-Å resolution. We find P74-26 capsids exhibit an overall architecture very similar to those of other tailed bacteriophages, allowing us to directly compare structures to derive the structural basis for enhanced stability. Our structure reveals lasso-like interactions that appear to function like catch bonds. This architecture allows the capsid to expand during genome packaging, yet maintain structural stability. The P74-26 capsid has T = 7 geometry despite being twice as large as mesophilic homologs. Capsid capacity is increased with a larger, flatter major capsid protein. Given these results, we predict decreased icosahedral complexity (i.e. T ≤ 7) leads to a more stable capsid assembly.


Matter ◽  
2019 ◽  
Vol 1 (4) ◽  
pp. 911-925 ◽  
Author(s):  
Kerim C. Dansuk ◽  
Sinan Keten
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document