fhb resistance
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 58)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
William T. Hay ◽  
James A. Anderson ◽  
Susan P. McCormick ◽  
Milagros P. Hojilla-Evangelista ◽  
Gordon W. Selling ◽  
...  

AbstractThe nutritional integrity of wheat is jeopardized by rapidly rising atmospheric carbon dioxide (CO2) and the associated emergence and enhanced virulence of plant pathogens. To evaluate how disease resistance traits may impact wheat climate resilience, 15 wheat cultivars with varying levels of resistance to Fusarium Head Blight (FHB) were grown at ambient and elevated CO2. Although all wheat cultivars had increased yield when grown at elevated CO2, the nutritional contents of FHB moderately resistant (MR) cultivars were impacted more than susceptible cultivars. At elevated CO2, the MR cultivars had more significant differences in plant growth, grain protein, starch, fructan, and macro and micro-nutrient content compared with susceptible wheat. Furthermore, changes in protein, starch, phosphorus, and magnesium content were correlated with the cultivar FHB resistance rating, with more FHB resistant cultivars having greater changes in nutrient content. This is the first report of a correlation between the degree of plant pathogen resistance and grain nutritional content loss in response to elevated CO2. Our results demonstrate the importance of identifying wheat cultivars that can maintain nutritional integrity and FHB resistance in future atmospheric CO2 conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dylan L. Larkin ◽  
Richard Esten Mason ◽  
David E. Moon ◽  
Amanda L. Holder ◽  
Brian P. Ward ◽  
...  

Many studies have evaluated the effectiveness of genomic selection (GS) using cross-validation within training populations; however, few have looked at its performance for forward prediction within a breeding program. The objectives for this study were to compare the performance of naïve GS (NGS) models without covariates and multi-trait GS (MTGS) models by predicting two years of F4:7 advanced breeding lines for three Fusarium head blight (FHB) resistance traits, deoxynivalenol (DON) accumulation, Fusarium damaged kernels (FDK), and severity (SEV) in soft red winter wheat and comparing predictions with phenotypic performance over two years of selection based on selection accuracy and response to selection. On average, for DON, the NGS model correctly selected 69.2% of elite genotypes, while the MTGS model correctly selected 70.1% of elite genotypes compared with 33.0% based on phenotypic selection from the advanced generation. During the 2018 breeding cycle, GS models had the greatest response to selection for DON, FDK, and SEV compared with phenotypic selection. The MTGS model performed better than NGS during the 2019 breeding cycle for all three traits, whereas NGS outperformed MTGS during the 2018 breeding cycle for all traits except for SEV. Overall, GS models were comparable, if not better than phenotypic selection for FHB resistance traits. This is particularly helpful when adverse environmental conditions prohibit accurate phenotyping. This study also shows that MTGS models can be effective for forward prediction when there are strong correlations between traits of interest and covariates in both training and validation populations.


2021 ◽  
pp. 191-242
Author(s):  
Guihua Bai ◽  

Wheat Fusarium head blight (FHB) is a destructive disease in wheat worldwide. Wheat resistance to FHB is a complex with five types. Each type of resistance is controlled by multiple quantitative trait loci (QTLs) with most having minor effects and being affected by environments. This chapter describes methodologies used for evaluating different types of resistance, consolidates the QTLs for type II and Type III resistance into 26 repeatable QTLs, discusses progresses made in genetics and breeding of wheat FHB resistance, and discusses possible new breeding strategies for FHB resistance improvement. The 26 repeatable QTL were located in ~100 Mb intervals based on IWGSC reference sequence map, which will be critical QTLs for functional marker development and for improvement of FHB resistance in breeding. Genomic selection (GS) together with marker-assisted selection (MAS) coupling with phenotypic selection will facilitate accumulation of multiple QTLs from different sources to create highly resistant cultivars.


2021 ◽  
Author(s):  
Wayne Xu ◽  
Andriy Bilichak ◽  
Raman Dhariwal ◽  
Maria Henriquez ◽  
Harpinder Randhawa

Background: Fusarium head blight (FHB) is one of the most devastating diseases of wheat worldwide and artificial intelligence can assist with understanding resistance to the disease. Considering different sample populations, marker types, reference maps, and statistical methods, we developed a Deep Learning Genome-wide Linkage Association Study (dpGLAS) of FHB resistance in wheat. Results: The dpGLAS was first applied to two bi-parental population datasets in which the cultivar AC Barrie was a common parent for FHB resistance. Eight candidate gene markers were discovered in the one AC Barrie population and 10 in the other associated with FHB resistance. Eight of these markers were also supported by the conventional QTL mapping. Most of these candidate marker genes were found associated with the Reactive Oxygen Species (ROS) and Abscisic acid (ABA) axes. These ROS and ABA pathways were further supported by RNA-seq transcriptome data of FHB resistant cv. AAC Tenacious, a parent of the third bi-parental population. In this dataset, the ROS-centered Panther protein families were significantly enriched in those genes that had most different response to FHB when compared the resistance Tenacious and the susceptible Roblin. Conclusions: This study developed the framework of dpGLAS and identified candidate genes for FHB resistance in the Canadian spring wheat cultivars AC Barrie and AAC Tenacious.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mustafa Zakieh ◽  
David S. Gaikpa ◽  
Fernanda Leiva Sandoval ◽  
Marwan Alamrani ◽  
Tina Henriksson ◽  
...  

Fusarium head blight (FHB) is one of the economically important diseases of wheat as it causes severe yield loss and reduces grain quality. In winter wheat, due to its vernalization requirement, it takes an exceptionally long time for plants to reach the heading stage, thereby prolonging the time it takes for characterizing germplasm for FHB resistance. Therefore, in this work, we developed a protocol to evaluate winter wheat germplasm for FHB resistance under accelerated growth conditions. The protocol reduces the time required for plants to begin heading while avoiding any visible symptoms of stress on plants. The protocol was tested on 432 genotypes obtained from a breeding program and a genebank. The mean area under disease progress curve for FHB was 225.13 in the breeding set and 195.53 in the genebank set, indicating that the germplasm from the genebank set had higher resistance to FHB. In total, 10 quantitative trait loci (QTL) for FHB severity were identified by association mapping. Of these, nine QTL were identified in the combined set comprising both genebank and breeding sets, while two QTL each were identified in the breeding set and genebank set, respectively, when analyzed separately. Some QTLs overlapped between the three datasets. The results reveal that the protocol for FHB evaluation integrating accelerated growth conditions is an efficient approach for FHB resistance breeding in winter wheat and can be even applied to spring wheat after minor modifications.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 756
Author(s):  
Wentao Zhang ◽  
Kerry Boyle ◽  
Anita Brule-Babel ◽  
George Fedak ◽  
Peng Gao ◽  
...  

Fusarium head blight (FHB) resistance is quantitatively inherited, controlled by multiple minor effect genes, and highly affected by the interaction of genotype and environment. This makes genomic selection (GS) that uses genome-wide molecular marker data to predict the genetic breeding value as a promising approach to select superior lines with better resistance. However, various factors can affect accuracies of GS and better understanding how these factors affect GS accuracies could ensure the success of applying GS to improve FHB resistance in wheat. In this study, we performed a comprehensive evaluation of factors that affect GS accuracies with a multi-parental population designed for FHB resistance. We found larger sample sizes could get better accuracies. Training population designed by CDmean based optimization algorithms significantly increased accuracies than random sampling approach, while mean of predictor error variance (PEVmean) had the poorest performance. Different genomic selection models performed similarly for accuracies. Including prior known large effect quantitative trait loci (QTL) as fixed effect into the GS model considerably improved the predictability. Multi-traits models had almost no effects, while the multi-environment model outperformed the single environment model for prediction across different environments. By comparing within and across family prediction, better accuracies were obtained with the training population more closely related to the testing population. However, achieving good accuracies for GS prediction across populations is still a challenging issue for GS application.


Plant Disease ◽  
2021 ◽  
Author(s):  
Rupesh Gaire ◽  
Clay Sneller ◽  
Gina Brown-Guedira ◽  
David A. Van Sanford ◽  
Mohsen Mohammadi ◽  
...  

Fusarium head blight (FHB) is a devastating disease of wheat and barley. In the US, a significant long-term investment in breeding FHB resistant cultivars began after the 1990s. However, to this date, no study has been performed to understand and monitor the rate of genetic progress in FHB resistance as a result of this investment. Using 20 years of data (1998 to 2018) from the Northern Uniform (NU) and Preliminarily Northern Uniform (PNU) winter wheat scab nurseries which consisted of 1068 genotypes originating from 9 different institutions, we studied the genetic trends in FHB resistance within the northern soft red winter wheat growing region using mixed model analyses. For the FHB resistance traits incidence, severity, Fusarium damaged kernels (FDK), and deoxynivalenol content, the rate of genetic gain in disease resistance was estimated to be 0.30 ± 0.1, 0.60 ± 0.09, 0.37 ± 0.11 points per year, and 0.11 ± 0.05 ppm per year, respectively. Among the five FHB resistance QTL assayed for test entries from 2012 to 2018, the frequencies of favorable alleles from Fhb 2DL Wuhan1 W14, Fhb Ernie 3Bc, and Fhb 5A Ning7840 was close to zero across the years. The frequency of the favorable at Fhb1 and Fhb 5A Ernie ranged from 0.08 to 0.33 and 0.06 to 0.20 respectively across years, and there was no trend in changes in allele frequencies over years. Overall, this study showed that substantial genetic progress has been made towards improving resistance to FHB. It is apparent that the current investment in public wheat breeding for FHB resistance is achieving results and will continue to play a vital role in reducing FHB levels in growers’ fields.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yiduo Zhang ◽  
Zibo Yang ◽  
Haicai Ma ◽  
Liying Huang ◽  
Feng Ding ◽  
...  

Wheat production is increasingly threatened by the fungal disease, Fusarium head blight (FHB), caused by Fusarium spp. The introduction of resistant varieties is considered to be an effective measure for containment of this disease. Mapping of FHB-resistance quantitative trait locus (QTL) has promoted marker-assisted breeding for FHB resistance, which has been difficult through traditional breeding due to paucity of resistance genes and quantitative nature of the resistance. The lab of Ma previously cloned Fhb1, which inhibits FHB spread within spikes, and fine mapped Fhb4 and Fhb5, which condition resistance to initial infection of Fusarium spp., from FHB-resistant indigenous line Wangshuibai (WSB). In this study, these three QTLs were simultaneously introduced into five modern Chinese wheat cultivars or lines with different ecological adaptations through marker-assisted backcross in early generations. A total of 14 introgression lines were obtained. All these lines showed significantly improved resistance to the fungal infection and disease spread in 2-year field trials after artificial inoculation. In comparison with the respective recipient lines, the Fhb1, Fhb4, and Fhb5 pyramiding could reduce the disease severity by 95% and did not systematically affect plant height, productive tiller number, kernel number per spike, thousand grain weight, flowering time, and unit yield (without Fusarium inoculation). These results indicated the great value of FHB-resistance QTLs Fhb1, Fhb4, and Fhb5 derived from WSB, and the feasibility and effectiveness of early generation selection for FHB resistance solely based on linked molecular markers.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Maria Buerstmayr ◽  
Christian Wagner ◽  
Tetyana Nosenko ◽  
Jimmy Omony ◽  
Barbara Steiner ◽  
...  

Abstract Background Fusarium head blight (FHB) is a devastating disease of wheat worldwide. Resistance to FHB is quantitatively controlled by the combined effects of many small to medium effect QTL. Flowering traits, especially the extent of extruded anthers, are strongly associated with FHB resistance. Results To characterize the genetic basis of FHB resistance, we generated and analyzed phenotypic and gene expression data on the response to Fusarium graminearum (Fg) infection in 96 European winter wheat genotypes, including several lines containing introgressions from the highly resistant Asian cultivar Sumai3. The 96 lines represented a broad range in FHB resistance and were assigned to sub-groups based on their phenotypic FHB severity score. Comparative analyses were conducted to connect sub-group-specific expression profiles in response to Fg infection with FHB resistance level. Collectively, over 12,300 wheat genes were Fusarium responsive. The core set of genes induced in response to Fg was common across different resistance groups, indicating that the activation of basal defense response mechanisms was largely independent of the resistance level of the wheat line. Fg-induced genes tended to have higher expression levels in more susceptible genotypes. Compared to the more susceptible non-Sumai3 lines, the Sumai3-derivatives demonstrated higher constitutive expression of genes associated with cell wall and plant-type secondary cell wall biogenesis and higher constitutive and Fg-induced expression of genes involved in terpene metabolism. Gene expression analysis of the FHB QTL Qfhs.ifa-5A identified a constitutively expressed gene encoding a stress response NST1-like protein (TraesCS5A01G211300LC) as a candidate gene for FHB resistance. NST1 genes are key regulators of secondary cell wall biosynthesis in anther endothecium cells. Whether the stress response NST1-like gene affects anther extrusion, thereby affecting FHB resistance, needs further investigation. Conclusion Induced and preexisting cell wall components and terpene metabolites contribute to resistance and limit fungal colonization early on. In contrast, excessive gene expression directs plant defense response towards programmed cell death which favors necrotrophic growth of the Fg pathogen and could thus lead to increased fungal colonization.


Plant Disease ◽  
2021 ◽  
Author(s):  
Bhavit Chhabra ◽  
Lovepreet Singh ◽  
Sydney Wallace ◽  
Adam Schoen ◽  
Yanhong Dong ◽  
...  

Fusarium head blight (FHB) primarily caused by Fusarium graminearum is a key disease of small grains. Diseased spikes show symptoms of premature bleaching shortly after infection and have aborted or shriveled seeds, resulting in reduced yields. The fungus also deteriorates quality and safety of the grain due to production of mycotoxins, especially deoxynivalenol (DON), which can result in grain being docked or rejected at the point of sale. Genetic host resistance to FHB is quantitative and no complete genetic resistance against this devastating disease is available. Alternative approaches to develop new sources of FHB resistance are needed. In this study, we performed extensive forward genetic screening of the M4 generation of an EMS induced mutagenized population of cultivar Jagger to isolate variants with FHB resistance. In field testing, 74 mutant lines were found to have resistance against FHB spread and 30 lines out of these also had low DON content. Subsequent testing over two years in controlled greenhouse conditions revealed ten M6 lines showing significantly lower FHB spread. Seven and six lines out of those 10 lines also had reduced DON content and lower FDKs, respectively. Future endeavors will include identification of the mutations that led to resistance in these variants.


Sign in / Sign up

Export Citation Format

Share Document