glioblastoma cell lines
Recently Published Documents


TOTAL DOCUMENTS

435
(FIVE YEARS 107)

H-INDEX

40
(FIVE YEARS 5)

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Jiabin Pan ◽  
Shiyang Sheng ◽  
Ling Ye ◽  
Xiaonan Xu ◽  
Yizhao Ma ◽  
...  

Abstract Background Glioblastomas are lethal brain tumors under the current combinatorial therapeutic strategy that includes surgery, chemo- and radio-therapies. Extensive changes in the tumor microenvironment is a key reason for resistance to chemo- or radio-therapy and frequent tumor recurrences. Understanding the tumor-nontumor cell interaction in TME is critical for developing new therapy. Glioblastomas are known to recruit normal cells in their environs to sustain growth and encroachment into other regions. Neural progenitor cells (NPCs) have been noted to migrate towards the site of glioblastomas, however, the detailed mechanisms underlying glioblastoma-mediated NPCs’ alteration remain unkown. Methods We collected EVs in the culture medium of three classic glioblastoma cell lines, U87 and A172 (male cell lines), and LN229 (female cell line). U87, A172, and LN229 were co-cultured with their corresponding EVs, respectively. Mouse NPCs (mNPCs) were co-cultured with glioblastoma-derived EVs. The proliferation and migration of tumor cells and mNPCs after EVs treatment were examined. Proteomic analysis and western blotting were utilized to identify the underlying mechanisms of glioblastoma-derived EVs-induced alterations in mNPCs. Results We first show that glioblastoma cell lines U87-, A172-, and LN229-derived EVs were essential for glioblastoma cell prolifeartion and migration. We then demonstrated that glioblastoma-derived EVs dramatically promoted NPC proliferation and migration. Mechanistic studies identify that glioblastoma-derived EVs achieve their functions via activating PI3K-Akt-mTOR pathway in mNPCs. Inhibiting PI3K-Akt pathway reversed the elevated prolfieration and migration of glioblastoma-derived EVs-treated mNPCs. Conclusion Our findings demonstrate that EVs play a key role in intercellular communication in tumor microenvironment. Inhibition of the tumorgenic EVs-mediated PI3K-Akt-mTOR pathway activation might be a novel strategy to shed light on glioblastoma therapy.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
K. H. Brian Lam ◽  
Alberto J. Leon ◽  
Weili Hui ◽  
Sandy Che-Eun Lee ◽  
Ihor Batruch ◽  
...  

AbstractGlioblastoma is an aggressive form of brain cancer with well-established patterns of intra-tumoral heterogeneity implicated in treatment resistance and progression. While regional and single cell transcriptomic variations of glioblastoma have been recently resolved, downstream phenotype-level proteomic programs have yet to be assigned across glioblastoma’s hallmark histomorphologic niches. Here, we leverage mass spectrometry to spatially align abundance levels of 4,794 proteins to distinct histologic patterns across 20 patients and propose diverse molecular programs operational within these regional tumor compartments. Using machine learning, we overlay concordant transcriptional information, and define two distinct proteogenomic programs, MYC- and KRAS-axis hereon, that cooperate with hypoxia to produce a tri-dimensional model of intra-tumoral heterogeneity. Moreover, we highlight differential drug sensitivities and relative chemoresistance in glioblastoma cell lines with enhanced KRAS programs. Importantly, these pharmacological differences are less pronounced in transcriptional glioblastoma subgroups suggesting that this model may provide insights for targeting heterogeneity and overcoming therapy resistance.


2022 ◽  
Author(s):  
Manuela Leo ◽  
Enrico Lattuada ◽  
Debora Caprara ◽  
Luisa Salvatori ◽  
Andrea Vecchione ◽  
...  

Overcoming the systemic administration of chemotherapy to reduce drug toxicity and the application of personalised medicine are two of the major challenges in the treatment of cancer. To this aim,...


Author(s):  
Tanja Dučić ◽  
Milena Ninkovic ◽  
Immaculada Martínez-Rovira ◽  
Swetlana Sperling ◽  
Veit Rohde ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2101
Author(s):  
Valentina Coccè ◽  
Isabella Rimoldi ◽  
Giorgio Facchetti ◽  
Emilio Ciusani ◽  
Giulio Alessandri ◽  
...  

A new cationic Pt(II) complex bearing 8-aminoquinoline as chelating ligand (called Pt-8AQ) was evaluated against two human carcinomas, one mesothelioma, and three glioblastoma cell lines. The in vitro comparison to the clinically approved CisPt showed a minor activity of Pt-8AQ against carcinoma and mesothelioma, whereas a significant activity of Pt-8AQ was observed on the proliferation of the three glioblastoma cell lines (U87-MG IC50 = 3.68 ± 0.69 µM; U373-MG IC50 = 11.53 ± 0.16 µM; U138-MG IC50 = 8.05 ± 0.23 µM) that was higher than that observed with the clinically approved CisPt (U87-MG IC50 = 7.27 + 1.80 µM; U373-MG IC50 = 22.69 ± 0.05 µM; U138-MG IC50 = 32.1 ± 4.44 µM). Cell cycle analysis proved that Pt-8AQ significantly affected the cell cycle pattern by increasing the apoptotic cells represented by the sub G0/G1 region related with a downregulation of p53 and Bcl-2. Moreover, an NMR investigation of Pt-8AQ interaction with 9-EtG, GSH, and Mets7 excluded DNA as the main target, suggesting a novel mechanism of action. Our study demonstrated the high stability of Pt-8AQ after incubation at 37 °C and a significant antineoplastic activity on glioblastomas. These features also make Pt-8AQ a good candidate for developing a new selective advanced cell chemotherapy approach in combination with MSCs.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi77-vi78
Author(s):  
Dylan Harwood ◽  
Signe Michaelsen ◽  
Filip Mundt ◽  
Bjarne Kristensen

Abstract BACKGROUND The standard therapy for glioblastoma patients is tumor resection followed by radiotherapy and temozolomide chemotherapy. Although glioblastoma has been extensively molecularly profiled along with other cancers, this knowledge has not yet been translated into improved survival outcomes. We used a bioinformatics approach to identify potential novel therapeutic strategies for glioblastoma. OBJECTIVES: Comprehensive online datasets which have assessed up to 1376 cancer cell lines in multiple ways were interrogated to identify potential drug candidates for glioblastoma. METHODS Datasets included were from the cancer cell line encyclopedia (mRNA expression), the Achilles project (cell viability following Crispr-Cas9 knockout) and PRISM (drug treatment). A t-test comparing cell viability of glioblastoma cell lines versus other cancers was used to identify potential drug candidates, followed by the use of multiple statistical tools to investigate potential mechanism of action and status of biomarkers. RESULTS Fluvastatin and pitavastatin produced the most significant effects in glioblastoma cell lines. The anti-cancer properties of statins have previously been attributed to the inhibition of HMG-Coa reductase. Here, we found their effects correlated with erastin, an enhancer of ferroptosis and with gene knockout of UBIAD1, which participates in non-mitochondrial ubiquinone synthesis. These effects were both found in glioblastoma cells and other cancers with a mesenchymal-like phenotype. CONCLUSION Statins appeared to be especially effective against glioblastoma lines and the effect could be linked to ferroptosis and inhibition of UBIAD1. In vitro validation of this finding is ongoing.


Author(s):  
Samuel D. Zwernik ◽  
Beau H. Adams ◽  
Daniel A. Raymond ◽  
Catherine M. Warner ◽  
Amin B. Kassam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document