myogenic progenitor
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 20)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 23 (2) ◽  
pp. 801
Author(s):  
Mai Thi Nguyen ◽  
Wan Lee

Skeletal myogenesis is essential for the maintenance of muscle quality and quantity, and impaired myogenesis is intimately associated with muscle wasting diseases. Although microRNA (miRNA) plays a crucial role in myogenesis and relates to muscle wasting in obesity, the molecular targets and roles of miRNAs modulated by saturated fatty acids (SFA) are largely unknown. In the present study, we investigated the role of miR-320-3p on the differentiation of myogenic progenitor cells. Palmitic acid (PA), the most abundant dietary SFA, suppressed myogenic factors expression and impaired differentiation in C2C12 myoblasts, and these effects were accompanied by CFL2 downregulation and miR-320-3p upregulation. In particular, miR-320-3p appeared to target CFL2 mRNA directly and suppress the expression of CFL2, an essential factor for filamentous actin (F-actin) depolymerization. Transfection of myoblasts with miR-320-3p mimic increased F-actin formation and nuclear translocation of Yes-associated protein 1 (YAP1), a key component of mechanotransduction. Furthermore, miR-320-3p mimic increased myoblast proliferation and markedly impeded the expression of MyoD and MyoG, consequently inhibiting myoblast differentiation. In conclusion, our current study highlights the role of miR-320-3p on CFL2 expression, YAP1 activation, and myoblast differentiation and suggests that PA-inducible miR-320-3p is a significant mediator of muscle wasting in obesity.


2021 ◽  
Author(s):  
Inseon Kim ◽  
Adhideb Ghosh ◽  
Nicola Bundschuh ◽  
Laura Hinte ◽  
Ferdinand von Meyenn ◽  
...  

Transient MyoD overexpression in concert with small molecules treatment reprograms mouse fibroblasts into induced myogenic progenitor cells (iMPCs). However, the molecular landscape and mechanisms orchestrating this cellular conversion remain unknown. Here, we undertook an integrative multi-omics approach to delineate the process of iMPC reprogramming in comparison to myogenic transdifferentiation mediated solely by MyoD. Utilizing transcriptomics, proteomics and genome-wide chromatin accessibility assays, we unravel distinct molecular trajectories which govern the two processes. Notably, iMPC reprogramming is characterized by gradual upregulation of stem and progenitor cell markers, unique signaling pathways, chromatin remodelers and cell cycle regulators which manifest via rewiring of the chromatin in core myogenic promoters. Furthermore, we determine that only iMPC reprogramming is mediated by Notch pathway activation, which is indispensable for iMPC formation and self-renewal. Collectively, this study charts divergent molecular blueprints for myogenic transdifferentiation or reprogramming and underpins the heightened capacity of iMPCs in capturing myogenesis ex vivo.


2021 ◽  
Author(s):  
Jesse V Kurland ◽  
Ashleigh Van Deusen ◽  
Bradley Pawlikowski ◽  
Monica Hall ◽  
Nicole Dalla Betta ◽  
...  

Skeletal muscle cells are multinucleated syncytial cells arising from cell fusion, yet despite sharing a common cytoplasm individual myonuclei express distinct transcriptional programs. Whether individual myonuclei acquire heterogenous transcriptional states via differences in their progenitors, during differentiation, or once their anatomical position is acquired, is not known. We performed transcriptome and pseudotime analysis of single myogenic nuclei from uninjured and post-injury murine skeletal muscle to assess when myonuclear heterogeneity is acquired. Two distinct progenitors contribute to myonuclei, one a non-myogenic fibroblast subtype, and skeletal muscle stem cells the other. Both progenitors enter a single pseudotime trajectory that bifurcates as myonuclei mature into two branches segregated by myosin isoform expression and metabolic profiles, suggesting transcriptional heterogeneity is acquired as myonuclei mature. In aged skeletal muscle myogenic progenitor expansion is perturbed and nuclei from aged muscle display distinct pseudotemporal kinetics compared to nuclei from young mice. In aged mice, the inferred myogenic differentiation trajectory is delayed, altering the distribution of myogenic nuclei in pseudotime, suggesting that altered transcriptional dynamics in nuclei in aged mice may drive age-associated muscle deficits and bias myonuclei towards acquiring oxidative metabolic profiles.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Franka Messner ◽  
Marco Thurner ◽  
Jule Müller ◽  
Michael Blumer ◽  
Julia Hofmann ◽  
...  

Abstract Background Muscle is severely affected by ischemia/reperfusion injury (IRI). Quiescent satellite cells differentiating into myogenic progenitor cells (MPC) possess a remarkable regenerative potential. We herein established a model of local application of MPC in murine hindlimb ischemia/reperfusion to study cell engraftment and differentiation required for muscle regeneration. Methods A clamping model of murine (C57b/6 J) hindlimb ischemia was established to induce IRI in skeletal muscle. After 2 h (h) warm ischemic time (WIT) and reperfusion, reporter protein expressing MPC (TdTomato or Luci-GFP, 1 × 106 cells) obtained from isolated satellite cells were injected intramuscularly. Surface marker expression and differentiation potential of MPC were analyzed in vitro by flow cytometry and differentiation assay. In vivo bioluminescence imaging and histopathologic evaluation of biopsies were performed to quantify cell fate, engraftment and regeneration. Results 2h WIT induced severe IRI on muscle, and muscle fiber regeneration as per histopathology within 14 days after injury. Bioluminescence in vivo imaging demonstrated reporter protein signals of MPC in 2h WIT animals and controls over the study period (75 days). Bioluminescence signals were detected at the injection site and increased over time. TdTomato expressing MPC and myofibers were visible in host tissue on postoperative days 2 and 14, respectively, suggesting that injected MPC differentiated into muscle fibers. Higher reporter protein signals were found after 2h WIT compared to controls without ischemia, indicative for enhanced growth and/or engraftment of MPC injected into IRI-affected muscle antagonizing muscle damage caused by IRI. Conclusion WIT-induced IRI in muscle requests increased numbers of injected MPC to engraft and persist, suggesting a possible rational for cell therapy to antagonize IRI. Further investigations are needed to evaluate the regenerative capacity and therapeutic advantage of MPC in the setting of ischemic limb injury.


2021 ◽  
Author(s):  
Franka Messner ◽  
Marco Thurner ◽  
Jule Müller ◽  
Michael Blumer ◽  
Julia Hofmann ◽  
...  

Abstract Background Muscle is severely affected by ischemia/reperfusion injury (IRI). Quiescent satellite cells differentiating into myogenic progenitor cells (MPC) possess a remarkable regenerative potential. We herein established a model of local application of MPC in murine hindlimb ischemia/reperfusion to study cell engraftment and differentiation required for muscle regeneration.Methods A clamping model of murine (C57b/6J) hindlimb ischemia was established to induce IRI in skeletal muscle. After 2 hours (h) warm ischemic time (WIT) and reperfusion, reporter protein expressing MPC (TdTomato or Luci-GFP, 1x106 cells) obtained from isolated satellite cells were injected intramuscularly. Surface marker expression and differentiation potential of MPC were analyzed in vitro by flow cytometry and differentiation assay. In vivo bioluminescence imaging and histopathologic evaluation of biopsies were performed to quantify cell fate, engraftment and regeneration.Results 2h WIT induced severe IRI on muscle, and muscle fiber regeneration as per histopathology within 14 days after injury. Bioluminescence in vivo imaging demonstrated reporter protein signals of MPC in 2h WIT animals and controls over the study period (75 days). Bioluminescence signals were detected at the injection site and increased over time. TdTomato expressing MPC and myofibers were visible in host tissue on postoperative days 2 and 14, respectively, suggesting that injected MPC differentiated into muscle fibers. Higher reporter protein signals were found after 2h WIT compared to controls without ischemia, indicative for enhanced growth and/or engraftment of MPC injected into IRI-affected muscle antagonizing muscle damage caused by IRI.Conclusion WIT-induced IRI in muscle requests increased numbers of injected MPC to engraft and persist, suggesting a possible rational for cell therapy to antagonize IRI. Further investigations are needed to evaluate the regenerative capacity and therapeutic advantage of MPC in the setting of ischemic limb injury.


2020 ◽  
Author(s):  
Franka Messner ◽  
Marco Thurner ◽  
Jule Müller ◽  
Michael Blumer ◽  
Julia Hofmann ◽  
...  

Abstract BackgroundMuscle is severely affected by ischemia/reperfusion injury (IRI). Quiescent satellite cells differentiating into myogenic progenitor cells (MPC) possess a remarkable regenerative potential. We herein established a model of local application of MPC in murine hindlimb ischemia/reperfusion to study cell engraftment and differentiation required for muscle regeneration.MethodsA clamping model of murine (C57b/6J) hindlimb ischemia was established to induce IRI in skeletal muscle. After 2 hours (h) warm ischemic time (WIT) and reperfusion, reporter protein expressing MPC (TdTomato or Luci-GFP, 1x106 cells) obtained from isolated satellite cells were injected intramuscularly. Surface marker expression and differentiation potential of MPC were analyzed in vitro by flow cytometry and differentiation assay. In vivo bioluminescence imaging and histopathologic evaluation of biopsies were performed to quantify cell fate, engraftment and regeneration.Results 2h WIT induced severe IRI on muscle, and muscle fiber regeneration as per histopathology within 14 days after injury. Bioluminescence in vivo imaging demonstrated reporter protein signals of MPC in 2h WIT animals and controls over the study period (75 days). Bioluminescence signals were detected at the injection site and increased over time. TdTomato expressing MPC and myofibers were visible in host tissue on postoperative days 2 and 14, respectively, suggesting that injected MPC differentiated into muscle fibers. Higher reporter protein signals were found after 2h WIT compared to controls without ischemia, indicative for enhanced growth and/or engraftment of MPC injected into IRI-affected muscle antagonizing muscle damage caused by IRI.ConclusionWIT-induced IRI in muscle requests increased numbers of injected MPC to engraft and persist, suggesting a possible rational for cell therapy to antagonize IRI. Further investigations are needed to evaluate the regenerative capacity and therapeutic advantage of MPC in the setting of ischemic limb injury.


Sign in / Sign up

Export Citation Format

Share Document