pressure driven analysis
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 17)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 147 (5) ◽  
pp. 06021005
Author(s):  
Nikolai B. Gorev ◽  
Vyacheslav N. Gorev ◽  
Inna F. Kodzhespirova ◽  
Igor A. Shedlovsky ◽  
P. Sivakumar

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1116
Author(s):  
Attilio Fiorini Morosini ◽  
Sina Shaffiee Haghshenas ◽  
Sami Shaffiee Haghshenas ◽  
Doo Yong Choi ◽  
Zong Woo Geem

Proper performance of water distribution networks (WDNs) plays a vital role in customer satisfaction. The aim of this study is to conduct a sensitivity analysis to evaluate the behavior of WDNs analyzed by a pressure-driven analysis (PDA) approach and the classification technique by using an appropriate artificial neural network, namely the Group Method of Data Handling (GMDH). For this purpose, this study is divided into four distinct steps. In the first and second steps, a real network has been analyzed by using a Pressure-Driven Analysis approach (PDA) to obtain the pressure, and α coefficient, the percentage of supplied flow. The analysis has been performed by using three different values of the design peak coefficient k*. In the third step, the Group Method of Data Handling (GMDH) has been applied and several binary models have been constructed. The analysis has been carried out by using input data, including the real topology of the network and the base demand necessary to satisfy requests of users in average conditions and by assuming that the demand in each single one-hour time step depends on a peak coefficient. Finally, the results obtained from the PDA hydraulic analysis and those obtained by using them in the GMDH algorithm have been compared and sensitivity analysis has been carried out. The innovation of the study is to demonstrate that the input parameters adopted in the design are correct. The analysis confirms that the GMDH algorithm gives proper results for this case study and the results are stable also when the value of each k*, characteristic of a different time hour step, varies in an admissible technical range. It was confirmed that the results obtained by using the PDA approach, analyzed by using a GMDH-type neural network, can provide higher performance sufficiency in the evaluation of WDNs.


2020 ◽  
Vol 2 (1) ◽  
pp. 18 ◽  
Author(s):  
Marco Amos Bonora ◽  
Fabio Caldarola ◽  
Mario Maiolo ◽  
Joao Muranho ◽  
Joaquim Sousa

A new set of local performance indices has recently been introduced within a mathematical framework specifically designed to promote a local–global analysis of water networks. Successively, some local indices were also set up and implemented on WaterNetGen to better exploit their potential. In this paper, after a very brief overview of tools and main notations, Santarém’s (Portugal) water distribution network (WDN) is examined, applying to it the mentioned set of local indices, as a new real case study. The paper also focuses on the Hypotesis required to assess these indices in a pressure driven analysis (PDA) approach, analyzing and discussing the results obtained from such a simulation.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2210 ◽  
Author(s):  
Marco Amos Bonora ◽  
Fabio Caldarola ◽  
Mario Maiolo

In the analysis of drinking Water Distribution Networks (WDNs), performance indices are widely used tools for obtaining synthetic information about the WDN operating regime (pressures and flows). This paper presents applications of a series of local surplus indices that act in a new mathematical framework. This framework allows reworking many well-known performance and energetic indices and simultaneously allowing analysis of specific aspects of the WDN. The analyses are carried out using different resolutive hydraulic approaches: the Demand-Driven Analysis (DDA) and the Pressure-Driven Analysis (PDA), typical of software such as EPANET and WaterNetGen. The authors analyse the hypotheses necessary for the application of these models, and how these influence the results of both the hydraulic modeling and the resilience indices assessment. In particular, two resilience indices are reformulated through the new local surplus indices and all of them are then simulated in different conditions for a water network known in literature as the Kang and Lansey WDN. The solving model assumption effects are deepen, reporting graphical and numerical results for different consumption scenarios and the different hydraulic approaches used.


2020 ◽  
Vol 10 (9) ◽  
pp. 3029 ◽  
Author(s):  
Attilio Fiorini Morosini ◽  
Sina Shaffiee Haghshenas ◽  
Sami Shaffiee Haghshenas ◽  
Zong Woo Geem

Investigation of Water Distribution Networks (WDNs) is considered a challenging task due to the unpredicted and uncertain conditions in water engineering. When in a WDN, a pipe failure occurs, and shut-off valves to isolate the broken pipe to allow repairing works are activated. In these new conditions, the hydraulic parameters in the network are modified because the topology of the entire system changes. If the head becomes inadequate, the Pressure Driven Analysis (PDA) is the correct approach to evaluate the performance of water networks. Hence, in the present study, the water distribution system was evaluated in pressure-driven conditions for 100 different scenarios and then using a type of neural network called Group Method of Data Handling (GMDH) as a stochastic technique. For this purpose, several most notable parameters including the base demand, pressure, and alpha (the percentage of effective supplied flow) were calculated using simulations based on a PDA approach and applied to the water distribution network of Praia a Mare in Southern Italy. In the second stage, the output parameters were used in a developed binary classification model. Finally, the obtained results showed that the GMDH algorithm can be applied as a powerful tool for modeling water distribution networks.


2020 ◽  
Vol 12 (8) ◽  
pp. 3492
Author(s):  
Jeongwook Choi ◽  
Doosun Kang

To restore water pipes damaged by earthquakes, it is common to block the water flow by closing the associated shut-off valves. In this process, water supply suspension in the area connected to the isolated pipes is inevitable, which decreases the serviceability of the water distribution network (WDN). In this study, we identified the impact of valve layout (i.e., number and location) on system serviceability during a seismic damage restoration process. By conducting a pressure-driven-analysis (PDA) using EPANET 3.0, a more realistic hydraulic analysis could be carried out under the seismically damaged condition. Furthermore, by considering the valve-controlled segment in the hydraulic simulation, a more realistic water suspension area was determined, and efficient seismic damage restoration strategies were identified. The developed model was implemented on a WDN to demonstrate the effect of valve layout on the post-earthquake restoration process. Finally, effective restoration strategies were suggested for the application network.


Sign in / Sign up

Export Citation Format

Share Document