minimal residual
Recently Published Documents


TOTAL DOCUMENTS

3852
(FIVE YEARS 869)

H-INDEX

118
(FIVE YEARS 14)

Author(s):  
Maureen M. O'Brien ◽  
Lingyun Ji ◽  
Nirali N. Shah ◽  
Susan R. Rheingold ◽  
Deepa Bhojwani ◽  
...  

PURPOSE Children's Oncology Group trial AALL1621 was conducted to prospectively determine the safety and efficacy of inotuzumab ozogamicin (InO) in pediatric and adolescent patients with relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). PATIENTS AND METHODS This single-arm phase II trial enrolled patients age 1-21 years with R/R CD22-positive B-ALL. In cycle 1, InO dosing was 0.8 mg/m2 intravenously on day 1 and 0.5 mg/m2 on days 8 and 15 of a 28-day cycle with response evaluation at day 28. Using a two-stage design, the trial was continuously monitored for dose-limiting toxicities and sinusoidal obstruction syndrome (SOS). CD22 expression was retrospectively evaluated by central flow cytometry. RESULTS Forty-eight patients were evaluable for response and toxicity; 19 had complete response (CR) and nine CR with incomplete count recovery (CRi) after cycle 1 (CR/CRi rate: 58.3%; two-sided 90% CI, 46.5 to 69.3). Twenty-seven of 28 patients with CR or CRi had minimal residual disease measured by flow cytometry; 18 (66.7%) had minimal residual disease < 0.01%. Seven of 28 patients (25%) with CR or CRi had delayed count recovery past day 42 in cycle 1. Three (6.3%) patients had grade 3 ALT elevation and one patient had grade 3 hyperbilirubinemia in cycle 1. Of 21 patients undergoing hematopoietic stem-cell transplantation after InO, 6 (28.6%) developed grade 3 SOS. Partial CD22 expression and lower CD22 site density were associated with lower likelihood of response to InO. CONCLUSION InO is effective and well tolerated in heavily pretreated children and adolescents with R/R CD22-positive B-ALL. SOS after hematopoietic stem-cell transplantation and prolonged cytopenias were notable. CD22 modulation was identified as a mechanism of resistance. Expanded study of InO combined with chemotherapy is underway.


2022 ◽  
Vol 12 ◽  
Author(s):  
Guan-hua Hu ◽  
Yi-fei Cheng ◽  
Ying-xi Zuo ◽  
Ying-jun Chang ◽  
Pan Suo ◽  
...  

BackgroundThe presence of minimal residual disease (MRD) is an independent risk factor for poor prognosis in patients with acute lymphoblastic leukemia (ALL). Moreover, the role of chimeric antigen receptor T-cell (CAR-T) therapy in patients with MRD is currently unclear.MethodsWe conducted a prospective study to investigate the role of CAR-T therapy in patients with persistent/recurrent MRD-positive ALL in first remission.ResultsA total of 77 patients who had persistent/recurrent MRD were included. Of these patients, 43 were enrolled in the CAR-T group, 20 received chemotherapy as a bridge to allogeneic hematopoietic cell transplantation (allo-HSCT), and 14 patients received intensified chemotherapy. MRD negativity was achieved in 90.7% of the patients after CAR-T infusion. Patients who received CAR-T therapy had a higher 3-year leukemia-free survival (LFS) than patients who did not (77.8% vs. 51.1%, P = 0.033). Furthermore, patients in the CAR-T group had a higher 3-year LFS than those in the chemotherapy bridge-to-allo-HSCT group [77.8% (95% CI, 64.8–90.7%) vs. 68.7% (95% CI, 47.7–89.6%), P = 0.575] and had a significantly higher 3-year LFS than those in the intensified chemotherapy group [77.8% (95% CI, 64.8–90.7%) vs. 28.6% (95% CI, 4.9–52.3%), P = 0.001]. Among the patients who received CAR-T therapy, eight were not bridged to allo-HSCT, and six (75%) remained in remission with a median follow-up of 23.0 months after CAR-T infusion.ConclusionsOur findings show that CAR-T therapy can effectively eliminate MRD and improve survival in patients with a suboptimal MRD response.


2022 ◽  
Vol 11 ◽  
Author(s):  
Shuang Fan ◽  
Meng-Zhu Shen ◽  
Xiao-Hui Zhang ◽  
Lan-Ping Xu ◽  
Yu Wang ◽  
...  

In patients with t(8;21) acute myeloid leukemia (AML), recurrent minimal residual disease (MRD) measured by RUNX1-RUNX1T1 transcript levels can predict relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT). This study aimed to compare the efficacy of preemptive interferon (IFN)-α therapy and donor lymphocyte infusion (DLI) in patients with t(8;21) AML following allo-HSCT. We also evaluated the appropriate method for patients with different levels of RUNX1-RUNX1T1 transcripts. In this retrospective study, consecutive patients who had high-risk t(8;21) AML and received allo-HSCT were enrolled. The inclusion criteria were as follows: (1) age ≤65 years; (2) regained MRD positive following allo-HSCT. MRD positive was defined as the loss of a ≥4.5-log reduction and/or &lt;4.5-log reduction in the RUNX1-RUNX1T1 transcripts, and high-level, intermediate-level, and low-level MRDs were, respectively, defined as &lt;2.5-log, 2.5−3.5-log, and 3.5−4.5-log reductions in the transcripts compared with the pretreatment baseline level. Patients with positive RUNX1-RUNX1T1 could receive preemptive IFN-α therapy or DLI, which was primarily based on donor availability and the intentions of physicians and patients. The patients received recombinant human IFN-α-2b therapy by subcutaneous injection twice a week every 4 weeks. IFN-α therapy was scheduled for six cycles or until the RUNX1-RUNX1T1 transcripts were negative for at least two consecutive tests. The rates of MRD turning negative for patients with low-level, intermediate-level, and high-level RUNX1-RUNX1T1 receiving IFN-α were 87.5%, 58.1%, and 22.2%, respectively; meanwhile, for patients with intermediate-level and high-level RUNX1-RUNX1T1 receiving DLI, the rates were 50.0% and 14.3%, respectively. For patients with low-level and intermediate-level RUNX1-RUNX1T1, the probability of overall survival at 2 years was higher in the IFN-α group than in the DLI group (87.6% vs. 55.6%; p = 0.003). For patients with high levels of RUNX1-RUNX1T1, the probability of overall survival was comparable between the IFN-α and DLI groups (53.3% vs. 83.3%; p = 0.780). Therefore, patients with low-level and intermediate-level RUNX1-RUNX1T1 could benefit more from preemptive IFN-α therapy compared with DLI. Clinical outcomes were comparable between preemptive IFN-α therapy and DLI in patients with high-level RUNX1-RUNX1T1; however, they should be further improved.


Author(s):  
Bruna Pellini ◽  
Aadel A. Chaudhuri

Circulating tumor DNA (ctDNA) minimal residual disease (MRD) is a powerful biomarker with the potential to improve survival outcomes for non–small-cell lung cancer (NSCLC). Multiple groups have shown the ability to detect MRD following curative-intent NSCLC treatment using next-generation sequencing–based assays of plasma cell-free DNA. These studies have been modest in size, largely retrospective, and without thorough prospective clinical validation. Still, when restricting measurement to the first post-treatment timepoint to assess the clinical performance of ctDNA MRD detection, they have demonstrated sensitivity for predicting disease relapse ranging between 36% and 100%, and specificity ranging between 71% and 100%. When considering all post-treatment follow-up timepoints (surveillance), including those beyond the initial post-treatment measurement, these assays' performances improve with sensitivity and specificity for identifying relapse ranging from 82% to 100% and 70% to 100%, respectively. In this manuscript, we review the evidence available to date regarding ctDNA MRD detection in patients with NSCLC undergoing curative-intent treatment and the ongoing prospective studies involving ctDNA MRD detection in this patient population.


BMC Cancer ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Jun Kong ◽  
Meng-Ge Gao ◽  
Ya-Zhen Qin ◽  
Yu Wang ◽  
Chen-Hua Yan ◽  
...  

Abstract Background The mixed-lineage leukemia (MLL) gene is located on chromosome 11q23. The MLL gene can be rearranged to generate partial tandem duplications (MLL-PTD), which occurs in about 5-10% of acute myeloid leukemia (AML) with a normal karyotype and in 5-6% of myelodysplastic syndrome (MDS) patients. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is currently one of the curative therapies available for AML and MDS with excess blasts (MDS-EB). However, how the prognosis of patients with high levels of MLL-PTD after allo-HSCT, and whether MLL-PTD could be used as a reliable indicator for minimal residual disease (MRD) monitoring in transplant patients remains unknown. Our study purposed to analyze the dynamic changes of MLL-PTD peri-transplantation and the best threshold for predicting relapse after transplantation. Methods We retrospectively collected the clinical data of 48 patients with MLL-PTD AML or MDS-EB who underwent allo-HSCT in Peking University People’s Hospital. The MLL-PTD was examined by real-time quantitative polymerase chain reaction (RQ-PCR) at the diagnosis, before transplantation and the fixed time points after transplantation. Detectable MLL-PTD/ABL > 0.08% was defined as MLL-PTD positive in this study. Results The 48 patients included 33 AML patients and 15 MDS-EB patients. The median follow-up time was 26(0.7-56) months after HSCT. In AML patients, 7 patients (21.2%) died of treatment-related mortality (TRM), 6 patients (18.2%) underwent hematological relapse and died ultimately. Of the 15 patients with MDS-EB, 2 patients (13.3%) died of infection. The 3-year cumulative incidence of relapse (CIR), overall survival (OS), disease-free survival (DFS) and TRM were 13.7 ± 5.2, 67.8 ± 6.9, 68.1 ± 6.8 and 20.3% ± 6.1%, respectively. ROC curve showed that post-transplant MLL-PTD ≥ 1.0% was the optimal cut-off value for predicting hematological relapse after allo-HSCT. There was statistical difference between post-transplant MLL-PTD ≥ 1.0% and MLL-PTD < 1.0% groups (3-year CIR: 75% ± 15.3% vs. 0%, P < 0.001; 3-year OS: 25.0 ± 15.3% vs. 80.7% ± 6.6%, P < 0.001; 3-year DFS: 25.0 ± 15.3% vs. 80.7 ± 6.6%, P < 0.001; 3-year TRM: 0 vs. 19.3 ± 6.6%, P = 0.277). However, whether MLL-PTD ≥ 1% or MLL-PTD < 1% before transplantation has no significant difference on the prognosis. Conclusions Our study indicated that MLL-PTD had a certain stability and could effectively reflect the change of tumor burden. The expression level of MLL-PTD after transplantation can serve as an effective indicator for predicting relapse.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shrihari S. Kadkol ◽  
Joshua Bland ◽  
Ashley Kavanaugh ◽  
Hongyu Ni ◽  
Vijeyaluxmi Nehru ◽  
...  

B-cell lymphomas are neoplastic proliferations of clonal B lymphocytes. Clonality is generally determined by PCR amplification of VDJ rearrangements in the IgH heavy chain or VJ rearrangements in Igκ/Igλ light chain genes followed by capillary electrophoresis. More recently, next-generation sequencing (NGS) has been used to detect clonality in B-cell lymphomas because of the exponential amount of information that is obtained beyond just detecting a clonal population. The additional information obtained is useful for diagnostic confirmation, prognosis assessment, and response to therapy. In this study, we utilized NGS analysis to characterize two histologically distinct lymphomas (DLBCL and CLL/SLL) that were detected contemporaneously in an asymptomatic patient. NGS analysis showed that the same VDJ rearrangement was present in nodal (DLBCL) and marrow (CLL/SLL) biopsies confirming that the DLBCL resulted from Richter’s transformation of a subclinical CLL/SLL. The V region of the rearrangement remained unmutated without somatic hypermutation. In silico analysis showed that the HCDR3 sequence was heterogeneous and not stereotypic. Minimal residual disease analysis by NGS showed that the tumor clone decreased by 2.84 logs in the bone marrow after R-CHOP therapy. However, a small number of tumor cells were still detected in the peripheral blood after R-CHOP therapy. Subsequent allogeneic transplantation was successful in eradicating the tumor clone and achieving deep molecular remission. We show that NGS analysis facilitated clinical management in our patient by helping to characterize the VDJ rearrangement in detail and by tracking minimal residual disease with high sensitivity and specificity.


Sign in / Sign up

Export Citation Format

Share Document