maximum ratio transmission
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 18)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Sarmad K. Ibrahim ◽  
Saif A. Abdulhussien

<span>The downlink multi-user precoding of the multiple-input multiple-output (MIMO) method includes optimal channel state information at the base station and a variety of linear precoding (LP) schemes. Maximum ratio transmission (MRT) is among the common precoding schemes but does not provide good performance with massive MIMO, such as high bit error rate (BER) and low throughput. The orthogonal frequency division multiplexing (OFDM) and precoding schemes used in 5G have a flaw in high-speed environments. Given that the Doppler effect induces frequency changes, orthogonality between OFDM subcarriers is disrupted and their throughput output is decreased and BER is decreased. This study focuses on solving this problem by improving the performance of a 5G system with MRT, specifically by using a new design that includes weighted overlap and add (WOLA) with MRT. The current research also compares the standard system MRT with OFDM with the proposed design (WOLA-MRT) to find the best performance on throughput and BER. Improved system results show outstanding performance enhancement over a standard system, and numerous improvements with massive MIMO, such as best BER and throughput. Its approximately 60% more throughput than the traditional systems. Lastly, the proposed system improves BER by approximately 2% compared with the traditional system.</span>


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8064
Author(s):  
Binod Kharel ◽  
Onel Luis Alcaraz López ◽  
Hirley Alves ◽  
Matti Latva-aho

This paper focuses on edge-enabled cloud radio access network architecture to achieve ultra-reliable communication, a crucial enabler for supporting mission-critical machine-type communication networks. We propose coordinated multi-point transmission schemes taking advantage of diversity mechanisms in interference-limited downlink cellular networks. The network scenario comprises spatially distributed multiple remote radio heads (RRHs) that may cooperate through silencing, or by using more elaborated diversity strategies such as maximum ratio transmission or transmit antenna selection to serve user equipment in the ultra-reliable operation regime. We derive an exact closed-form expression for the outage probabilities and expected values of signal-to-interference ratio for silencing, transmit antenna selection and maximum ratio transmission schemes. We formulate rate control and energy efficiency under reliability constraints to test the performance and resource usage of the proposed schemes. Furthermore, we study the impact on average system sum throughput with throughput-reliability trade-off under cooperative communication. Extensive numerical analysis shows the feasibility of ultra-reliable communication by implementing diversity schemes with RRHs cooperation.


2021 ◽  
Vol 2062 (1) ◽  
pp. 012006
Author(s):  
Sammaiah Thurpati ◽  
Mahesh Mudavath ◽  
P. Muthuchidambaranathan

Abstract The performance of linear precoding schemes in downlink Massive MIMO systems is dealt with in this paper. Linear precoding schemes are incorporated with zero-forcing (ZF) and maximum ratio transmission (MRT), truncated polynomial expansion (TPE), regularized zero force (RZF) in Downlink massive MIMO systems. Massive MIMO downlink output is evaluated with linear precoding included. This paper expresses the performance of achievable sum-rate linear precoding with variable signal-to-noise (SNR) ratio and achievable sum rate and several transmitter-receiver antennas, such as imperfect CSI, less complex processing, and inter-user interference. The transmitter has complete state information on the channel. The information narrates how a signal propagates to the receiver from the transmitter and reflects, for example, the cumulative effect of distance scattering, fading, and power decay. They show that the performance analysis of two linear precoding techniques, i.e., Maximum Ratio Transmission (MRT) and Zero Forcing (ZF) for downlink mMIMO output network over a perfect chain. The results show the improved ZF precoding achievable sum rate compared to the MRT precoding schemes and compared the average achievable rate RZF and TPE.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shen Yi ◽  
Pan Zhiwen ◽  
Liu Nan ◽  
You Xiaohu

We propose a legal full-duplex unmanned aerial vehicle (UAV) surveillance system in the presence of the ground-to-ground suspicious link with antisurveillance technology. UAV performs passive surveillance and active jamming simultaneously, and the suspicious source with multiantenna employs artificial noise to avoid being monitored. In order to ensure effective surveilling, we adopt two beamforming schemes, namely, maximum ratio transmission (MRT)/receiving zero-forcing (RZF) and transmitting zero-forcing (TZF)/maximum ratio combing (MRC), for MIMO UAV. For the two beamforming schemes, we derive the surveilling nonoutage probability in a closed-form expression and analyze the surveilling performance under different system environments. Monte Carlo (MC) simulation validates the correctness of the formula.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Zhixin Zhao ◽  
Dong Wang ◽  
Hongwei Zhang ◽  
Haitao Sang

This paper investigates the design of the joint user pairing and power allocation scheme with transmission mode switching (TMS) in downlink multiple-input-single-output (MISO) systems. Firstly, the closed-form expressions of the boundary of achievable rate region of two candidate transmission modes, i.e., non-orthogonal multiple access based maximum ratio transmission (NOMA-MRT) and minimum mean square error beamforming (MMSE-BF), are obtained. By obtaining the outer boundary of the union of the achievable rate regions of the two transmission modes, an adaptive switching method is developed to achieve a larger rate region. Secondly, based on the idea that the solution to the problem of weighted sum rate (WSR) optimization must be on the boundary of the achievable rate region, the optimal solutions to the problem of WSR optimization for NOMA-MRT and MMSE-BF are obtained for the two-user case, respectively. Subsequently, by exploiting the aforementioned optimal solutions for two transmission modes and the high efficiency of TMS, a suboptimal user pairing and power allocation algorithm (JUPA) is proposed to further improve the sum rate performance for the multiuser case. Compared with the exhaustive search-based user pairing and power allocation algorithm (ES-PPA), the proposed JUPA can enjoy a much lower computational complexity and only suffers a slight sum rate performance loss, and it outperforms other traditional schemes. Finally, numerical results are provided to validate the analyses and the proposed algorithms.


2021 ◽  
Author(s):  
Zhixin Zhao ◽  
Dong Wang ◽  
Hongwei Zhang ◽  
Haitao Sang

Abstract IThis paper investigates the design of the joint user pairing and power allocation scheme with transmission mode switching (TMS) in downlink multiple-input-single-output (MISO) systems. Firstly, the closed-form expressions of the boundary of achievable rate region of two candidate transmission modes, i.e., non-orthogonal multiple access based maximum ratio transmission (NOMA-MRT) and minimum mean square error beamforming (MMSE-BF), are obtained. By obtaining the outer boundary of the union of the achievable rate regions of the two transmission modes, an adaptive switching method is developed to achieve a larger rate region. Secondly, based on the idea that the solution to the problem of weighted sum rate (WSR) optimization must be on the boundary of the achievable rate region, the optimal solutions to the problem of WSR optimization for NOMA-MRT and MMSE-BF are obtained for the two-user case, respectively. Subsequently, by exploiting the optimal solutions aforementioned for two transmission modes and the high efficiency of TMS, a suboptimal User pairing and Power Allocation algorithm (JUPA) is proposed to further improve sum-rate performance for the multi-user case. Compared with the Exhaustive Search based user Pairing and Power Allocation algorithm (ES-PPA), the proposed JUPA can enjoy a much lower computational complexity and only suffer a slight sum-rate performance loss, whereas outperforms other traditional schemes. Finally, numerical results are provided to validate the analyses and the proposed algorithms.


Author(s):  
Zhaoyang Wang ◽  
Yang Cao ◽  
Dongchen Zhang ◽  
Xinhai Hua ◽  
Peng Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document