vivaldi antenna
Recently Published Documents


TOTAL DOCUMENTS

793
(FIVE YEARS 276)

H-INDEX

32
(FIVE YEARS 5)

Author(s):  
Akshta Jagdale ◽  
H. Sairaam ◽  
Harshita Kulkarni ◽  
Lakshmi Suresh Nair ◽  
Sanjeev Kumar
Keyword(s):  

Author(s):  
Huda Ibrahim Hamd ◽  
Israa Hazem Ali ◽  
Ahmed Mohammed Ahmed

Due to the tremendous development in the field of wireless communication and its use in several fields, whether military or commercial was proposed. A novel tapered slot Vivaldi antenna is designed and simulated at double band frequency (Ku-band) using computer simulation technology (CST) software 2020. The dimensions of the antenna are 2.3 × 1 × 0.4 mm<sup>3</sup> with a microstrip feed of 0.5 mm. The proposed antenna is improved by cutting a number of circle shapes on the patch layer in different positions. The simulation results are divided into more sections according to the number of circle shapes cutting. The results are good acceptance and make the improved Vivaldi antenna valuable in many future wireless communication applications.


2021 ◽  
Vol 21 (2) ◽  
pp. 85
Author(s):  
Findi Nur Witriani ◽  
Yahya Syukri Amrullah ◽  
Fajri Darwis ◽  
Taufiqqurrachman Taufiqqurrachman ◽  
Yusuf Nur Wijayanto ◽  
...  

Microwave imaging, such as images for radiological inspection in the medical profession, is one of the applications utilized in ultra-wideband (UWB) frequency ranges. The Vivaldi antenna is one of the most popular antennas for this purpose. The antenna is utilized because of its simple, lightweight, and compact design, as well as its excellent efficiency and gain capabilities. In this work, we present a high-gain Vivaldi antenna for microwave imaging applications. The proposed Vivaldi antenna is designed using a double-slot structure method with the addition of corrugated edges and a semicircle director aimed at improving the gain. The antenna is designed to operate at frequencies ranging from 3.1 to 10.6 GHz. Based on the modeling findings, the suggested antenna attain a bandwidth of 7.5 GHz with operating frequencies from 3.1 GHz to 10.6 GHz for a VSWR of less than two. In comparison to a typical single slot antenna, the suggested antenna provides a substantial boost in gain performance. The increase in gain is proportional to the frequency of operation. The constructed antenna has a lower bandwidth than the simulated one, with operating frequencies of 3.5 GHz – 3.75 GHz and 4.25 – 10.89 GHz, respectively, and useable bandwidths of 250 MHz and 6.64 GHz. All these results suggest that the antenna is suitable for microwave imaging applications.


Author(s):  
Sumit Kumar ◽  
Amruta S. Dixit

Abstract This paper presents a dual-band 1 × 4 antipodal Vivaldi antenna (AVA) array with high gain to operate over a dual-frequency band that covers the 5G frequency spectrum. The gain is enhanced by employing a dielectric lens (DL). The AVA array consists of four radiating patch elements, corrugations, DL, and array feeding network on the top side. The bottom side contains four radiating patches which are the mirror images of top radiating patches. The designed AVA contains 1 × 4 array antenna elements with a DL that is operating in the ranges of 24.59–24.98 and 27.06–29 GHz. The dimensions of the designed antenna are 97.2 mm × 71.2 mm × 0.8 mm. For the improvement in gain and impedance matching at the dual-band frequency, corrugation and feeding network techniques are used. The gain obtained is about 8–12 dBi. AVA array is tested after fabrication and the measured results are reliable with the simulation results.


2021 ◽  
Vol 22 (12) ◽  
pp. 1655-1665
Author(s):  
Shaopeng Pan ◽  
Mingtuan Lin ◽  
Lin Qi ◽  
Pan Chen ◽  
Yang Feng ◽  
...  

Author(s):  
David S. Cabral ◽  
Leandro Manera ◽  
Leonardo B. Zoccal ◽  
Daniel B. Ferreira ◽  
Francesco Prudenzano
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Liton Chandra Paul ◽  
Md. Mohiminul Islam

In this paper, a super wide band (SWB) Vivaldi antenna has been proposed for lower 5G bands in Sub-6 GHz and satellite applications (S, C, X, Ku, and K band) using various performance improvement techniques. In the presented Vivaldi antenna, different slots are applied not only to increase the gain and directivity but also to get operating frequency at the intended specific frequency range. All dimensions of those slots were chosen by using the sweep parameter method. Ten corrugated side slots, two circular slots, and one via have been used to enhance the performance especially bandwidth and gain of the antenna. At the edge of wireless communication, we want to enhance two key aspects within the communication systems: the quality of service and the cost. The proposed antenna incorporates a simple structure and small size with dimensions of 45 × 35 × 0.79 mm3. Thus, after design, optimization, and simulation, the antenna produces a good reflection coefficient over the very large operating bandwidth of 23.19 GHz, 1 < VSWR < 2, maximum gain of 10.2 dBi, and average radiation efficiency of above 90%, which can be recommended as a suitable antenna for lower 5G as well as satellite applications. The antenna is designed, simulated, and analyzed by using computer simulation technology microwave studio (CST-MWS). Finally, the performance of the Vivaldi antenna has been validated by FEKO and HFSS software, and we achieved a very good matching among the results.


2021 ◽  
Author(s):  
Hans Herdian ◽  
Takeshi Inoue ◽  
Takuichi Hirano ◽  
Masatsugu Sogabe ◽  
Atsushi Shirane ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document