fraxinus excelsior
Recently Published Documents


TOTAL DOCUMENTS

495
(FIVE YEARS 92)

H-INDEX

39
(FIVE YEARS 3)

Author(s):  
Tobias Lutz ◽  
Gitta Langer ◽  
Cornelia Heinze

AbstractA novel dsRNA virus named “Thelonectria quadrivirus 1” (TQV1) was found in a member of the genus Thelonectria (Ascomycota), isolated from a root associated with stem collar necrosis of Fraxinus excelsior L. The complete genome of TQV1 is composed of four segments, each containing a single ORF on the positive sense RNA. The sequence of the 5´ (5´-(C/T)ACGAAAAA-3´) and 3´termini (5´AT(T/G)AGCAATG(T/C)GC(G/A)CG-3’) of dsRNA 1 (4876 bp), dsRNA 2 (4312 bp), dsRNA 3 (4158 bp), and dsRNA 4 (3933 bp) are conserved. Based on its genome organization and phylogenetic position, TQV1 is suggested to be a new member of the family Quadriviridae. This is the first report of a mycovirus infecting a member of the genus Thelonectria.


Author(s):  
Duccio Migliorini ◽  
Nicola Luchi ◽  
Emanuele Nigrone ◽  
Francesco Pecori ◽  
Alessia Lucia Pepori ◽  
...  

AbstractHymenoscyphus fraxineus, causal agent of Ash Dieback, has posed a threat to Fraxinus excelsior (common ash) in Europe since the 1990s. In south-western Europe, optimal climatic conditions for H. fraxineus become scattered and host density decreases, reducing disease spread rates. To date, the Ash Dieback agent has not been reported from southern and most of central Italy, where native F. excelsior is present as small fragmented populations. This study examines the expansion of Ash Dieback into central Italy, and it considers the consequences of further local spread with regards to the loss of F. excelsior genetic resource. Symptomatic F. excelsior were sampled from sixteen sites in northern and central Italy during 2020. Specimens were analyzed with a culturomics and a quantitative PCR approach. A bibliographic search of F. excelsior floristic reports was conducted for the creation of a detailed range map. The combined use of both techniques confirmed the presence of H. fraxineus in all the sites of central Italy where host plants were symptomatic. These new records represent the southern limit of the current known distribution of this pathogen in Italy, and together with Montenegro, in Europe. The characterization of the F. excelsior scattered range suggests that further spread of Ash Dieback across southern Italy is a realistic scenario. This presents a threat not just to the southern European proveniences of F. excelsior, but to the species as a whole, should Ash Dieback lead to the loss of warm climate adapted genetic material, which may become increasingly valuable under climate change.


Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 35
Author(s):  
Tadeusz Kowalski ◽  
Piotr Bilański ◽  
Bartłomiej Grad

Apiognomonia hystrix is an ascomycetous fungus within Diaporthales that is found on maples and to a lesser extent on other hardwood trees in Europe, Northern America and Asia. To date, varying opinions on the species’ status as a cause of plant diseases have been expressed. In this study, we present the results of analyses conducted from 2012–2017 at forest sites in Poland on the occurrence of A. hystrix on Acer pseudoplatanus and Fraxinus excelsior and the pathogenicity of this fungus towards both tree species. For the sycamore leaves, A. hystrix conidiomata were detected in connection with 19.2% of galls caused by Dasineura vitrina, 20.4% of galls caused by Drisina glutinosa and 67.9% of extensive vein-associated necroses. The A. hystrix colonization of galls caused by both midge species resulted in statistically significantly larger necroses. On European ash leaves, conidiomata of A. hystrix occurred in connection with 0.8% of Dasineura fraxinea galls. Perithecia of A. hystrix were detected on overwintered leaf petioles in 8.1% of A. pseudoplatanus and 1.2% of F. excelsior samples. Twelve representative cultures were characterized molecularly by barcoding three marker genes (ITS, ACT, CAL). Results of phylogenetic analyses indicate that A. hystrix isolates are genetically variable, and three lineages are distinguishable. Eight isolates, including four originating from sycamore and four from European ash, were used to determine A. hystrix pathogenicity. Among the 48 A. pseudoplatanus petioles inoculated with A. hystrix, 41 developed necrotic lesions after 8 weeks, with the average necrosis length caused by particular isolates ranging from 14.5 to 67.2 mm. None of the 48 inoculated F. excelsior petioles developed necrotic lesions. Finally, selected aspects of A. hystrix morphology on natural substrates and in vitro are discussed in this paper, as well as the species’ potential to cause disease symptoms.


2021 ◽  
Vol 116 ◽  
pp. 21-27
Author(s):  
Jakub Gawron ◽  
Monika Marchwicka

Color changes of ash wood (Fraxinus excelsior L.) caused by thermal modification in air and steam. Ash wood samples of 20x20x30 mm were subjected to thermal modification in different conditions. The thermal modification was conducted in air at 190 °C and in steam at 160 °C. For both environments modification lasted 2, 6 and 10 hours. Samples color parameters were measured before and after thermal modification on the basis of the mathematical CIELab color space model. Changes in all parameters (L, a and b) were observed, the highest in lightness (L) - darker color. The total color difference (ΔE) and chromaticity change (ΔC) were calculated for all samples. The highest value of ΔE was obtained for wood modified in the air at 190 °C for 10 h. The highest value of ΔC was obtained for wood modified in steam at 160 °C for 10 h. However, the value obtained for wood modified in the air at 190 °C for 10 h were only slightly lower.


2021 ◽  
Vol 116 ◽  
pp. 39-45
Author(s):  
Jakub Gawron

Influence of environment, temperature and time of the thermal modification of ash wood (Fraxinus excelsior L.) on the cellulose weight average degree of polymerization . Using the size-exclusion chromatography (HPLC SEC) method, the weight average degree of cellulose polymerization was determined. The polymer was isolated by the Kürschner-Hoffer method from ash wood (Fraxinus excelsior L.). The wood was thermally modified in different environments (nitrogen, steam and air) at 190°C and modification times of 2, 6 and 10 hours. Depending on the anaerobic atmosphere used, the highest values of the weight average degree of cellulose polymerization were obtained for the nitrogen environment, followed by steam and air. The effect of modification time on the weight average degree of polymerization was observed. The highest values were obtained for wood modified at 2 hours, then 6 and 10 hours of modification. The native wood showed the highest degree of polymerization. On the basis of the results obtained, it can be concluded that for the material studied the oxidation and degradation reactions occurring depend on the environment and time for a given temperature of wood modification.


Author(s):  
N. V. Dragan

A phytosanitary inspection of the tree plantations of the memorial composition “integral prismatiod”. The affection of tree diseases was established visually in the presence of pathologies. In the examination of Fraxinus excelsior was used the method proposed by T. Kowalski et al, 2010. 43% of trees are healthy, about 30% of trees have minor pathologies, 21% of trees are very weak, 6% of trees are dry or withering. The main diseases were rot, necrosis and cancer, drying of the crown. The most dangerous disease was halar necrosis of Fraxinus excelsior, which led to the drying up of a large number of trees and affected half of the living trees. The prognosis of Fraxinus excelsior plantations is unfavorable. A change of dominant breeds will take place on the site, Acer platanoides will take the dominant position.


Insects ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 6
Author(s):  
Erika Soldi ◽  
Emma Fuller ◽  
Anna M. M. Tiley ◽  
Archie K. Murchie ◽  
Trevor R. Hodkinson

This is the first report of the ash sawfly, Tomostethus nigritus, in the Republic of Ireland. We observed defoliated leaves of Fraxinus excelsior L. and T. nigritus larvae at a forestry plantation in Co. Kildare. Morphological observation of the larvae and DNA analysis using mitochondrial COI barcoding confirmed the identification of this pest of ash.


MycoKeys ◽  
2021 ◽  
Vol 85 ◽  
pp. 31-56
Author(s):  
Ning Jiang ◽  
Hermann Voglmayr ◽  
Chun-Gen Piao ◽  
Yong Li

Diaporthe (Diaporthaceae, Diaporthales) is a common fungal genus inhabiting plant tissues as endophytes, pathogens and saprobes. Some species are reported from tree branches associated with canker diseases. In the present study, Diaporthe samples were collected from Alnus glutinosa, Fraxinus excelsior and Quercus robur in Utrecht, the Netherlands. They were identified to species based on a polyphasic approach including morphology, pure culture characters, and phylogenetic analyses of a combined matrix of partial ITS, cal, his3, tef1 and tub2 gene regions. As a result, four species (viz. Diaporthe pseudoalnea sp. nov. from Alnus glutinosa, Diaporthe silvicola sp. nov. from Fraxinus excelsior, D. foeniculacea and D. rudis from Quercus robur) were revealed from tree branches in the Netherlands. Diaporthe pseudoalnea differs from D. eres (syn. D. alnea) by its longer conidiophores. Diaporthe silvicola is distinguished from D. fraxinicola and D. fraxini-angustifoliae by larger alpha conidia.


Sign in / Sign up

Export Citation Format

Share Document