ca2 channels
Recently Published Documents


TOTAL DOCUMENTS

2978
(FIVE YEARS 200)

H-INDEX

128
(FIVE YEARS 8)

2022 ◽  
Vol 146 ◽  
pp. 112494
Author(s):  
Phutthida Kongthitilerd ◽  
Thavaree Thilavech ◽  
Marisa Marnpae ◽  
Weiqiong Rong ◽  
Shaomian Yao ◽  
...  

2022 ◽  
Vol 23 (2) ◽  
pp. 827
Author(s):  
Léa Réthoré ◽  
Joohee Park ◽  
Jérôme Montnach ◽  
Sébastien Nicolas ◽  
Joseph Khoury ◽  
...  

Thanks to the crosstalk between Na+ and Ca2+ channels, Na+ and Ca2+ homeostasis interplay in so-called excitable cells enables the generation of action potential in response to electrical stimulation. Here, we investigated the impact of persistent activation of voltage-gated Na+ (NaV) channels by neurotoxins, such as veratridine (VTD), on intracellular Ca2+ concentration ([Ca2+]i) in a model of excitable cells, the rat pituitary GH3b6 cells, in order to identify the molecular actors involved in Na+-Ca2+ homeostasis crosstalk. By combining RT-qPCR, immunoblotting, immunocytochemistry, and patch-clamp techniques, we showed that GH3b6 cells predominantly express the NaV1.3 channel subtype, which likely endorses their voltage-activated Na+ currents. Notably, these Na+ currents were blocked by ICA-121431 and activated by the β-scorpion toxin Tf2, two selective NaV1.3 channel ligands. Using Fura-2, we showed that VTD induced a [Ca2+]i increase. This effect was suppressed by the selective NaV channel blocker tetrodotoxin, as well by the selective L-type CaV channel (LTCC) blocker nifedipine. We also evidenced that crobenetine, a NaV channel blocker, abolished VTD-induced [Ca2+]i elevation, while it had no effects on LTCC. Altogether, our findings highlight a crosstalk between NaV and LTCC in GH3b6 cells, providing a new insight into the mode of action of neurotoxins.


2021 ◽  
Vol 22 (24) ◽  
pp. 13376
Author(s):  
Carmen Costas-Ferreira ◽  
Lilian R. F. Faro

Pesticides of different chemical classes exert their toxic effects on the nervous system by acting on the different regulatory mechanisms of calcium (Ca2+) homeostasis. Pesticides have been shown to alter Ca2+ homeostasis, mainly by increasing its intracellular concentration above physiological levels. The pesticide-induced Ca2+ overload occurs through two main mechanisms: the entry of Ca2+ from the extracellular medium through the different types of Ca2+ channels present in the plasma membrane or its release into the cytoplasm from intracellular stocks, mainly from the endoplasmic reticulum. It has also been observed that intracellular increases in the Ca2+ concentrations are maintained over time, because pesticides inhibit the enzymes involved in reducing its levels. Thus, the alteration of Ca2+ levels can lead to the activation of various signaling pathways that generate oxidative stress, neuroinflammation and, finally, neuronal death. In this review, we also discuss some proposed strategies to counteract the detrimental effects of pesticides on Ca2+ homeostasis.


2021 ◽  
Vol 10 (1) ◽  
pp. 01-06
Author(s):  
Shahin Asadi ◽  
Mahsa Hemati ◽  
Naser Shagerdi Esmaeli

Lambert-Eaton myasthenic syndrome (LEMS) is a rare presynaptic disorder of neuromuscular transmission in which quantal release of acetylcholine (ACh) is impaired, causing a unique set of clinical characteristics, which include proximal muscle weakness, depressed tendon reflexes, posttetanic potentiation, and autonomic changes. [1] The initial presentation can be similar to that of myasthenia gravis (MG), but the progressions of the 2 diseases have some important differences. LEMS disrupts the normally reliable neurotransmission at the neuromuscular junction (NMJ). This disruption is thought to result from an autoantibody-mediated removal of a subset of the P/Q-type Ca2+ channels involved with neurotransmitter release.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1811
Author(s):  
James B. Ames

L-type voltage-gated Ca2+ channels (CaV1.2 and CaV1.3, called CaV) interact with the Ca2+ sensor proteins, calmodulin (CaM) and Ca2+ binding Protein 1 (CaBP1), that oppositely control Ca2+-dependent channel activity. CaM and CaBP1 can each bind to the IQ-motif within the C-terminal cytosolic domain of CaV, which promotes increased channel open probability under basal conditions. At elevated cytosolic Ca2+ levels (caused by CaV channel opening), Ca2+-bound CaM binding to CaV is essential for promoting rapid Ca2+-dependent channel inactivation (CDI). By contrast, CaV binding to CaBP1 prevents CDI and promotes Ca2+-induced channel opening (called CDF). In this review, I provide an overview of the known structures of CaM and CaBP1 and their structural interactions with the IQ-motif to help understand how CaM promotes CDI, whereas CaBP1 prevents CDI and instead promotes CDF. Previous electrophysiology studies suggest that Ca2+-free forms of CaM and CaBP1 may pre-associate with CaV under basal conditions. However, previous Ca2+ binding data suggest that CaM and CaBP1 are both calculated to bind to Ca2+ with an apparent dissociation constant of ~100 nM when CaM or CaBP1 is bound to the IQ-motif. Since the neuronal basal cytosolic Ca2+ concentration is ~100 nM, nearly half of the neuronal CaV channels are suggested to be bound to Ca2+-bound forms of either CaM or CaBP1 under basal conditions. The pre-association of CaV with calcified forms of CaM or CaBP1 are predicted here to have functional implications. The Ca2+-bound form of CaBP1 is proposed to bind to CaV under basal conditions to block CaV binding to CaM, which could explain how CaBP1 might prevent CDI.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1781
Author(s):  
Bastien Masson ◽  
David Montani ◽  
Marc Humbert ◽  
Véronique Capuano ◽  
Fabrice Antigny

Pulmonary arterial hypertension (PAH) is a severe and multifactorial disease. PAH pathogenesis mostly involves pulmonary arterial endothelial and pulmonary arterial smooth muscle cell (PASMC) dysfunction, leading to alterations in pulmonary arterial tone and distal pulmonary vessel obstruction and remodeling. Unfortunately, current PAH therapies are not curative, and therapeutic approaches mostly target endothelial dysfunction, while PASMC dysfunction is under investigation. In PAH, modifications in intracellular Ca2+ homoeostasis could partly explain PASMC dysfunction. One of the most crucial actors regulating Ca2+ homeostasis is store-operated Ca2+ channels, which mediate store-operated Ca2+ entry (SOCE). This review focuses on the main actors of SOCE in human and experimental PASMC, their contribution to PAH pathogenesis, and their therapeutic potential in PAH.


2021 ◽  
Author(s):  
Chao Tan ◽  
Shan Shan H Wang ◽  
Giovanni de Nola ◽  
Pascal S Kaeser

Active zones are molecular machines that control neurotransmitter release through synaptic vesicle docking and priming, and through coupling of these vesicles to Ca2+ entry. The complexity of active zone machinery has made it challenging to determine which mechanisms drive these roles in release. Here, we induce RIM+ELKS knockout to eliminate active zone scaffolding networks, and then reconstruct each active zone function. Re-expression of RIM1-Zn fingers positioned Munc13 on undocked vesicles and rendered them release-competent. Reconstitution of release-triggering required docking of these vesicles to Ca2+ channels. Fusing RIM1-Zn to CaVbeta4-subunits sufficed to restore docking, priming and release-triggering without reinstating active zone scaffolds. Hence, exocytotic activities of the 80 kDa CaVbeta4-Zn fusion protein bypassed the need for megadalton-sized secretory machines. These data define key mechanisms of active zone function, establish that fusion competence and docking are mechanistically separable, and reveal that active zone scaffolding networks are not required for release.


2021 ◽  
Vol 22 (21) ◽  
pp. 11447
Author(s):  
Yi-Chieh Hung ◽  
Yi-Hsiu Kuo ◽  
Pei-Wen Hsieh ◽  
Ting-Yang Hsieh ◽  
Jinn-Rung Kuo ◽  
...  

The glutamatergic neurotransmitter system has received substantial attention in research on the pathophysiology and treatment of neurological disorders. The study investigated the effect of the polyphenolic compound chlorogenic acid (CGA) on glutamate release in rat cerebrocortical nerve terminals (synaptosomes). CGA inhibited 4-aminopyridine (4-AP)-induced glutamate release from synaptosomes. This inhibition was prevented in the absence of extracellular Ca2+ and was associated with the inhibition of 4-AP-induced elevation of Ca2+ but was not attributed to changes in synaptosomal membrane potential. In line with evidence observed through molecular docking, CGA did not inhibit glutamate release in the presence of P/Q-type Ca2+ channel inhibitors; therefore, CGA-induced inhibition of glutamate release may be mediated by P/Q-type Ca2+ channels. CGA-induced inhibition of glutamate release was also diminished by the calmodulin and Ca2+/calmodilin-dependent kinase II (CaMKII) inhibitors, and CGA reduced the phosphorylation of CaMKII and its substrate, synapsin I. Furthermore, pretreatment with intraperitoneal CGA injection attenuated the glutamate increment and neuronal damage in the rat cortex that were induced by kainic acid administration. These results indicate that CGA inhibits glutamate release from cortical synaptosomes by suppressing P/Q-type Ca2+ channels and CaMKII/synapsin I pathways, thereby preventing excitotoxic damage to cortical neurons.


Sign in / Sign up

Export Citation Format

Share Document