external ph
Recently Published Documents


TOTAL DOCUMENTS

345
(FIVE YEARS 21)

H-INDEX

50
(FIVE YEARS 1)

Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 120
Author(s):  
Katharina Geistlinger ◽  
Jana D. R. Schmidt ◽  
Eric Beitz

(1) Background: Human aquaporin-9 (AQP9) conducts several small uncharged metabolites, such as glycerol, urea, and lactic acid. Certain brain tumors were shown to upregulate AQP9 expression, and the putative increase in lactic acid permeability was assigned to severity. (2) Methods: We expressed AQP9 and human monocarboxylate transporter 1 (MCT1) in yeast to determine the uptake rates and accumulation of radiolabeled l-lactate/l-lactic acid in different external pH conditions. (3) Results: The AQP9-mediated uptake of l-lactic acid was slow compared to MCT1 at neutral and slightly acidic pH, due to low concentrations of the neutral substrate species. At a pH corresponding to the pKa of l-lactic acid, uptake via AQP9 was faster than via MCT1. Substrate accumulation was fundamentally different between AQP9 and MCT1. With MCT1, an equilibrium was reached, at which the intracellular and extracellular l-lactate/H+ concentrations were balanced. Uptake via AQP9 was linear, theoretically yielding orders of magnitude of higher substrate accumulation than MCT1. (4) Conclusions: The selectivity of AQP9 for neutral l-lactic acid establishes an ion trap for l-lactate after dissociation. This may be physiologically relevant if the transmembrane proton gradient is steep, and AQP9 acts as the sole uptake path on at least one side of a polarized cell.


PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Bianca N. Quade ◽  
Mark D. Parker ◽  
Marion C. Hoepflinger ◽  
Shaunna Phipps ◽  
Mary A. Bisson ◽  
...  

AbstractCharaceae are closely related to the ancient algal ancestors of all land plants. The long characean cells display a pH banding pattern to facilitate inorganic carbon import in the acid zones for photosynthetic efficiency. The excess OH−, generated in the cytoplasm after CO2 is taken into the chloroplasts, is disposed of in the alkaline band. To identify the transporter responsible, we searched the Chara australis transcriptome for homologues of mouse Slc4a11, which functions as OH−/H+ transporter. We found a single Slc4-like sequence CL5060.2 (named CaSLOT). When CaSLOT was expressed in Xenopus oocytes, an increase in membrane conductance and hyperpolarization of resting potential difference (PD) was observed with external pH increase to 9.5. These features recall the behavior of Slc4a11 in oocytes and are consistent with the action of a pH-dependent OH−/H+ conductance. The large scatter in the data might reflect intrinsic variability of CaSLOT transporter activation, inefficient expression in the oocyte due to evolutionary distance between ancient algae and frogs, or absence of putative activating factor present in Chara cytoplasm. CaSLOT homologues were found in chlorophyte and charophyte algae, but surprisingly not in related charophytes Zygnematophyceae or Coleochaetophyceae.


2021 ◽  
Vol 118 (22) ◽  
pp. e2026587118
Author(s):  
Tohru Minamino ◽  
Yusuke V. Morimoto ◽  
Miki Kinoshita ◽  
Keiichi Namba

The proton motive force (PMF) consists of the electric potential difference (Δψ), which is measured as membrane voltage, and the proton concentration difference (ΔpH) across the cytoplasmic membrane. The flagellar protein export machinery is composed of a PMF-driven transmembrane export gate complex and a cytoplasmic ATPase ring complex consisting of FliH, FliI, and FliJ. ATP hydrolysis by the FliI ATPase activates the export gate complex to become an active protein transporter utilizing Δψ to drive proton-coupled protein export. An interaction between FliJ and a transmembrane ion channel protein, FlhA, is a critical step for Δψ-driven protein export. To clarify how Δψ is utilized for flagellar protein export, we analyzed the export properties of the export gate complex in the absence of FliH and FliI. The protein transport activity of the export gate complex was very low at external pH 7.0 but increased significantly with an increase in Δψ by an upward shift of external pH from 7.0 to 8.5. This observation suggests that the export gate complex is equipped with a voltage-gated mechanism. An increase in the cytoplasmic level of FliJ and a gain-of-function mutation in FlhA significantly reduced the Δψ dependency of flagellar protein export by the export gate complex. However, deletion of FliJ decreased Δψ-dependent protein export significantly. We propose that Δψ is required for efficient interaction between FliJ and FlhA to open the FlhA ion channel to conduct protons to drive flagellar protein export in a Δψ-dependent manner.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stephan Wimmi ◽  
Alexander Balinovic ◽  
Hannah Jeckel ◽  
Lisa Selinger ◽  
Dimitrios Lampaki ◽  
...  

AbstractMany bacterial pathogens use a type III secretion system (T3SS) to manipulate host cells. Protein secretion by the T3SS injectisome is activated upon contact to any host cell, and it has been unclear how premature secretion is prevented during infection. Here we report that in the gastrointestinal pathogens Yersinia enterocolitica and Shigella flexneri, cytosolic injectisome components are temporarily released from the proximal interface of the injectisome at low external pH, preventing protein secretion in acidic environments, such as the stomach. We show that in Yersinia enterocolitica, low external pH is detected in the periplasm and leads to a partial dissociation of the inner membrane injectisome component SctD, which in turn causes the dissociation of the cytosolic T3SS components. This effect is reversed upon restoration of neutral pH, allowing a fast activation of the T3SS at the native target regions within the host. These findings indicate that the cytosolic components form an adaptive regulatory interface, which regulates T3SS activity in response to environmental conditions.


Author(s):  
Mohammad Reza Bayat ◽  
Mostafa Baghani

The pH-sensitive hydrogels are a unique class of three-dimensional hydrophilic polymers containing ionic pendant groups on their polymeric network. In response to the external pH variation, these materials span the volume of an aqueous/biological solution and swell without dissolution. Nowadays, the pH-sensitive hydrogels have attracted the growing interest of many researchers in various fields of researches such as drug delivery, tissue engineering, soft actuators, etc. which makes the simulation of their behavior crucial for optimum utilization. The essential prerequisite for the simulation of these materials is the swelling theory. In this article, we present a review of the fundamental phenomena in swelling theories of the pH-sensitive hydrogels. We also classify the swelling theories into two groups including the monophasic and multiphasic theories. Then, we briefly examine the most highlighted swelling theories in each group. The experimental data is essential for material parameters estimation as well as verification of the constitutive equations. Thus, we introduce and discuss the most highlighted experiments on the swelling and deswelling behavior of the pH-sensitive hydrogels as well.


2020 ◽  
Vol 10 ◽  
Author(s):  
Barbora Pavlatovská ◽  
Markéta Machálková ◽  
Petra Brisudová ◽  
Adam Pruška ◽  
Karel Štěpka ◽  
...  

Colorectal cancer (CRC) is a disease with constantly increasing incidence and high mortality. The treatment efficacy could be curtailed by drug resistance resulting from poor drug penetration into tumor tissue and the tumor-specific microenvironment, such as hypoxia and acidosis. Furthermore, CRC tumors can be exposed to different pH depending on the position in the intestinal tract. CRC tumors often share upregulation of the Akt signaling pathway. In this study, we investigated the role of external pH in control of cytotoxicity of perifosine, the Akt signaling pathway inhibitor, to CRC cells using 2D and 3D tumor models. In 3D settings, we employed an innovative strategy for simultaneous detection of spatial drug distribution and biological markers of proliferation/apoptosis using a combination of mass spectrometry imaging and immunohistochemistry. In 3D conditions, low and heterogeneous penetration of perifosine into the inner parts of the spheroids was observed. The depth of penetration depended on the treatment duration but not on the external pH. However, pH alteration in the tumor microenvironment affected the distribution of proliferation- and apoptosis-specific markers in the perifosine-treated spheroid. Accurate co-registration of perifosine distribution and biological response in the same spheroid section revealed dynamic changes in apoptotic and proliferative markers occurring not only in the perifosine-exposed cells, but also in the perifosine-free regions. Cytotoxicity of perifosine to both 2D and 3D cultures decreased in an acidic environment below pH 6.7. External pH affects cytotoxicity of the other Akt inhibitor, MK-2206, in a similar way. Our innovative approach for accurate determination of drug efficiency in 3D tumor tissue revealed that cytotoxicity of Akt inhibitors to CRC cells is strongly dependent on pH of the tumor microenvironment. Therefore, the effect of pH should be considered during the design and pre-clinical/clinical testing of the Akt-targeted cancer therapy.


2020 ◽  
Vol 153 (1) ◽  
Author(s):  
Michael Pusch ◽  
Giovanni Zifarelli

ClC-7 is a lysosomal 2 Cl−/1 H+ antiporter of the CLC protein family, which comprises Cl− channels and other Cl−/H+ antiporters. Mutations in ClC-7 and its associated β subunit Ostm1 lead to osteopetrosis and lysosomal storage disease in humans and mice. Previous studies on other mammalian CLC transporters showed that mutations of a conserved, intracellularly located glutamate residue, the so-called proton glutamate, abolish steady-state transport activity but increase transient capacitive currents associated with partial reactions of the transport cycle. In contrast, we observed large, transient capacitive currents for the wild-type ClC-7, which depend on external pH and internal, but not external, Cl−. Very similar transient currents were observed for the E312A mutant of the proton glutamate. Interestingly, and unlike in other mammalian CLC transporters investigated so far, the E312A mutation strongly reduces, but does not abolish, stationary transport currents, potentially explaining the intermediate phenotype observed in the E312A mouse line.


Author(s):  
M. Rajasimman ◽  
N. Rajamohan ◽  
S. Sujatha

Abstract In this research study, removal of zinc ions from the industrial wastewater was investigated using green emulsion liquid membrane technology. The liquid membrane was prepared by using waste cooking oil along with the surfactant, SPAN 80 and the internal phase, sulfuric acid. The extraction percentage of zinc increased with the increase in concentration of surfactant. The response surface methodology (RSM) analysis identified that the optimal variable values for the maximum extraction of zinc were: external pH – 3.8, surfactant concentration 4% (vol.), internal phase concentration – 1.61N, zinc concentration – 742 mg/L, external phase to emulsion volume ratio – 0.94 and carrier concentration – 8.9%. At the optimized conditions experiment was carried out and the maximum extraction was found to be 97.4%. The perturbation plot shows that the extraction of zinc was affected by variables in the following order of effect: zinc concentration > surfactant concentration > carrier concentration > external pH > external phase to emulsion volume ratio > internal phase concentration.


Sign in / Sign up

Export Citation Format

Share Document