numerical performance
Recently Published Documents


TOTAL DOCUMENTS

290
(FIVE YEARS 84)

H-INDEX

23
(FIVE YEARS 3)

Author(s):  
Huimin Zhang ◽  
Runsen Zhang ◽  
Andrea Zanoni ◽  
Yufeng Xing ◽  
Pierangelo Masarati

AbstractA novel explicit three-sub-step time integration method is proposed. From linear analysis, it is designed to have at least second-order accuracy, tunable stability interval, tunable algorithmic dissipation and no overshooting behaviour. A distinctive feature is that the size of its stability interval can be adjusted to control the properties of the method. With the largest stability interval, the new method has better amplitude accuracy and smaller dispersion error for wave propagation problems, compared with some existing second-order explicit methods, and as the stability interval narrows, it shows improved period accuracy and stronger algorithmic dissipation. By selecting an appropriate stability interval, the proposed method can achieve properties better than or close to existing second-order methods, and by increasing or reducing the stability interval, it can be used with higher efficiency or stronger dissipation. The new method is applied to solve some illustrative wave propagation examples, and its numerical performance is compared with those of several widely used explicit methods.


2022 ◽  
Vol 14 (2) ◽  
pp. 662
Author(s):  
Lorenzo Domenichini ◽  
Andrea Paliotto ◽  
Monica Meocci ◽  
Valentina Branzi

Too often the identification of critical road sites is made by “accident-based” methods that consider the occurred accidents’ number. Nevertheless, such a procedure may encounter some difficulties when an agency does not have reliable and complete crash data at the site level (e.g., accidents contributing factors not clear or approximate accident location) or when crashes are underreported. Furthermore, relying on accident data means waiting for them to occur with the related consequences (possible deaths and injuries). A non-accident-based approach has been proposed by PIARC. This approach involves the application of the Human Factors Evaluation Tool (HFET), which is based on the principles of Human Factors (HF). The HFET can be applied to road segments by on-site inspections and provides a numerical performance measure named Human Factors Scores (HFS). This paper analyses which relationship exists between the results of the standard accident-based methods and those obtainable with HFET, based on the analysis of self-explaining and ergonomic features of the infrastructure. The study carried out for this purpose considered 23 km of two-way two-lane roads in Italy. A good correspondence was obtained, meaning that high risky road segments identified by the HFS correspond to road segments already burdened by a high number of accidents. The results demonstrated that the HFET allows for identifying of road segments requiring safety improvements even if accident data are unavailable. It allows for improving a proactive NSS, avoiding waiting for accidents to occur.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Naila Rafiq ◽  
Mudassir Shams ◽  
Nazir Ahmad Mir ◽  
Yaé Ulrich Gaba

A highly efficient two-step simultaneous iterative computer method is established here for solving polynomial equations. A suitable special type of correction helps us to achieve a very high computational efficiency as compared to the existing methods so far in the literature. Analysis of simultaneous scheme proves that its convergence order is 14. Residual graphs are also provided to demonstrate the efficiency and performance of the newly constructed simultaneous computer method in comparison with the methods given in the literature. In the end, some engineering problems and some higher degree complex polynomials are solved numerically to validate its numerical performance.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2450
Author(s):  
Jun Huo ◽  
Yuping Wu ◽  
Guoen Xia ◽  
Shengwei Yao

In this paper, a new subspace gradient method is proposed in which the search direction is determined by solving an approximate quadratic model in which a simple symmetric matrix is used to estimate the Hessian matrix in a three-dimensional subspace. The obtained algorithm has the ability to automatically adjust the search direction according to the feedback from experiments. Under some mild assumptions, we use the generalized line search with non-monotonicity to obtain remarkable results, which not only establishes the global convergence of the algorithm for general functions, but also R-linear convergence for uniformly convex functions is further proved. The numerical performance for both the traditional test functions and image restoration problems show that the proposed algorithm is efficient.


Author(s):  
Zulqurnain Sabir ◽  
Muhammad Umar ◽  
Muhammad Asif Zahoor Raja ◽  
Haci Mehmet Baskonus ◽  
Wei Gao

The aim of this work is to present a design of Morlet wavelet neural network (MWNN) for solving a novel prevention category (P) in the HIV system, known as HIPV mathematical model. The numerical performance of the novel HIPV mathematical model will be observed by exploiting the MWNN that works through the optimization procedures of global/local via “genetic algorithm (GA)” and local search “interior-point algorithm (IPA)”, i.e. MWNN-GA-IPA. An error function using the differential HIPV mathematical model and its initial conditions is presented and optimized by the MWNN-GA-IPA. The obtained results have been compared with the Adams method to check the competence of the MWNN-GA-IPA. For the reliability and stability of the scheme, the performance using different statistical operators has been performed based on the multiple independent trials to solve the novel HIPV mathematical model.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mudassir Shams ◽  
Naila Rafiq ◽  
Nasreen Kausar ◽  
Praveen Agarwal ◽  
Choonkil Park ◽  
...  

AbstractTwo new iterative methods for the simultaneous determination of all multiple as well as distinct roots of nonlinear polynomial equation are established, using two suitable corrections to achieve a very high computational efficiency as compared to the existing methods in the literature. Convergence analysis shows that the orders of convergence of the newly constructed simultaneous methods are 10 and 12. At the end, numerical test examples are given to check the efficiency and numerical performance of these simultaneous methods.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2718
Author(s):  
Lina Zhang ◽  
Xin Wu ◽  
Enwei Liang

Many force–gradient explicit symplectic integration algorithms have been designed for the Hamiltonian H=T(p)+V(q) with kinetic energy T(p)=p2/2 in the existing references. When a force–gradient operator is appropriately adjusted as a new operator, it is still suitable for a class of Hamiltonian problems H=K(p,q)+V(q) with integrable part K(p,q)=∑i=1n∑j=1naijpipj+∑i=1nbipi, where aij=aij(q) and bi=bi(q) are functions of coordinates q. The newly adjusted operator is not a force–gradient operator but is similar to the momentum-version operator associated to the potential V. The newly extended (or adjusted) algorithms are no longer solvers of the original Hamiltonian, but are solvers of slightly modified Hamiltonians. They are explicit symplectic integrators with symmetry or time reversibility. Numerical tests show that the standard symplectic integrators without the new operator are generally poorer than the corresponding extended methods with the new operator in computational accuracies and efficiencies. The optimized methods have better accuracies than the corresponding non-optimized counterparts. Among the tested symplectic methods, the two extended optimized seven-stage fourth-order methods of Omelyan, Mryglod and Folk exhibit the best numerical performance. As a result, one of the two optimized algorithms is used to study the orbital dynamical features of a modified Hénon–Heiles system and a spring pendulum. These extended integrators allow for integrations in Hamiltonian problems, such as the spiral structure in self-consistent models of rotating galaxies and the spiral arms in galaxies.


Sign in / Sign up

Export Citation Format

Share Document