hybrid screening
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 34)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
Vol 8 (12) ◽  
pp. 138-141
Author(s):  
Muhammad Kamil Malik ◽  
◽  
Muhammad Zubai ◽  
Sikander Ali ◽  
Kanwal Hanif ◽  
...  

Pakistan imports edible oil to meet the national demands posing burden on national exchequer. She is trying to grow edible oil crops to overcome this expense. Area under Sunflower cultivation is continuously increasing in Pakistan. But, insect pest infestation is a major concern for the growers. There is a need to develop hybrids which are less susceptible to the insect pests. Present study was conducted to find the most less susceptible Sunflower hybrids. Promising sunflower hybrids were grown and relevant data were recorded. All the hybrids were found moderately resistant to Resistant. This response is subject to the availability of insect population in the field and environment plays an integral role in it. There is dire need to explore the potential further of these hybrids. Keywords: Sunflower, Hybrid, Screening, Whitefly, Jassid, capitulum borer


2021 ◽  
Author(s):  
Yingqi Hong ◽  
Jianyi Zhang ◽  
Yanxi Lv ◽  
Na Yao ◽  
Xiuming Liu

Abstract BackgroundSalicylic acid (SA) plays an important role in regulating leaf senescence. However, the molecular mechanism of leaf senescence of safflower (Carthamus tinctorius) is still elusive. In this study we found that the bHLH transcription factor (TF) CtbHLH41 in Carthamus tinctorius significantly delayed leaf senescence and inhibited the expression of senescence-related genes.ResultsIn order to explore how CtbHLH41 promotes leaf senescence, we carried out yeast two-hybrid screening. In this study, by exploring the mechanism of CtbHLH41 regulating CtCP1, it was found that CtCP1 promoted the hydrolysis of CtbHLH41 protein, accelerated the transcriptional activities of salicylic acid-mediated senescence-related genes CtSAG12 and CtSAG29, chlorophyll degradation genes CtNYC1 and CtNYE1, and accelerated leaf senescence. We found a negative SA regulator CtANS1, which interacts with CtbHLH41 and regulates its stability, thereby inhibiting CtCP1-mediated leaf senescence.ConclusionsIn short, our results provide a new insight into the mechanism of CtbHLH41 actively regulating the senescence of safflower leaves induced by SA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shijuan Li ◽  
Bingliang Xu ◽  
Xiaolei Niu ◽  
Xiang Lu ◽  
Jianping Cheng ◽  
...  

Agrobacterium tumefaciens can cause crown gall tumors by transferring both an oncogenic piece of DNA (T-DNA) and several effector proteins into a wide range of host plants. For the translocated effector VirE3 multiple functions have been reported. It acts as a transcription factor in the nucleus binding to the Arabidopsis thaliana pBrp TFIIB-like protein to activate the expression of VBF, an F-box protein involved in degradation of the VirE2 and VIP1 proteins, facilitating Agrobacterium-mediated transformation. Also VirE3 has been found at the plasma membrane, where it could interact with VirE2. Here, we identified AtJAZ8 in a yeast two-hybrid screening with VirE3 as a bait and confirmed the interaction by pull-down and bimolecular fluorescence complementation assays. We also found that the deletion of virE3 reduced Agrobacterium virulence in a root tumor assay. Overexpression of virE3 in Arabidopsis enhanced tumorigenesis, whereas overexpression of AtJAZ8 in Arabidopsis significantly decreased the numbers of tumors formed. Further experiments demonstrated that AtJAZ8 inhibited the activity of VirE3 as a plant transcriptional regulator, and overexpression of AtJAZ8 in Arabidopsis activated AtPR1 gene expression while it repressed the expression of AtPDF1.2. Conversely, overexpression of virE3 in Arabidopsis suppressed the expression of AtPR1 whereas activated the expression of AtPDF1.2. Our results proposed a novel mechanism of counter defense signaling pathways used by Agrobacterium, suggesting that VirE3 and JAZ8 may antagonistically modulate the salicylic acid/jasmonic acid (SA/JA)-mediated plant defense signaling response during Agrobacterium infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiuping Tan ◽  
Shan Jiang ◽  
Ning Wang ◽  
Xiao Liu ◽  
Xinhao Zhang ◽  
...  

The OVATE family protein (OFP) genes (OFPs) have been shown to respond to salt stress in plants. However, the regulatory mechanism for salt tolerance of the peach (Prunus persica) OFP gene PpOFP1 has not been elucidated. In this study, using yeast two-hybrid screening, we isolated a nucleus-localized ZF-HD_dimer domain protein PpZFHD1, which interacts with the PpOFP1 protein in the peach cultivar “Zhongnongpan No.10”. A segmentation experiment further suggested that the interaction happens more specifically between the N-terminal, contains ZF-HD_dimer domain, of PpZFHD1 and the C-terminal, consists of OVATE domain, of PpOFP1. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) experiments indicate that transcription of these two genes are induced by 200 mmol/L (mM) NaCl treatment. Heterogeneous transformation experiments suggested that the growth status of transformed yeast strain over-expressing each of these two genes was more robust than that of control (CK). Furthermore, transgenic tomato plants over-expressing PpOFP1 were also more robust. They had a higher content of chlorophyll, soluble proteins, soluble sugars, and proline. Activities of the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in these plants were higher, and tissues from these plants exhibited a lower relative conductivity and malondialdehyde (MDA) content. These results suggest that PpOFP1 physically interacts with PpZFHD1 and confers salt tolerance to tomato and yeast, thus revealing a novel mechanism for regulating salt tolerance in peach and other perennial deciduous trees.


2021 ◽  
Author(s):  
Liping Huang ◽  
Mohsin Tanveer ◽  
E Ji ◽  
Sergey Shabala ◽  
Mingyi Jiang

Abscisic acid (ABA) is a key component of many signaling networks mediating plant adaptation to various stresses. In this context, ABA-induced antioxidant defence is considered to be a main mechanism to that enhances water stress tolerance in plants. The specific details of this activation remain, however, elusive. In this work, we show that DIP1, a protein from novel R3H family, played a central role in modulating water stress tolerance in rice. OsDIP1 transcripts were induced by hydrogen peroxide (H2O2), ABA, drought (polyethylene glycol treatment), and salt stress. Overexpression of OsDIP1 in rice enhanced drought and salinity tolerance while knocking out OsDIP1 by CRISPR-Cas9 editing resulted in drought and salt sensitive phenotype. The activity and gene expression of antioxidant defence enzymes, superoxide dismutase (SOD), catalase (CAT), increased in OsDIP1-overexpressed transgenic rice plants, while the content of malondialdehyde (MDA) decreased. In contrast, the content and gene expression of SOD and CAT, decreased, and the content of MDA increased in knockout of OsDIP1 rice plants, suggesting that overexpression of OsDIP1 enhances the antioxidant capacity of rice plants. The yeast two hybrid screening test revealed that OsDIP1 interacted with ZFP36, a key zinc finger transcription factor involved in ABA-induced antioxidant defence. Moreover, OsDIP1 could modulate some key ABA-responsive genes via interacting with ZFP36. Overall, our findings indicate an important role of OsDIP1 in ABA-induced antioxidant defence signaling and adaptation to salinity and drought in rice.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 323
Author(s):  
Qian Chen ◽  
Danlong Jing ◽  
Shuming Wang ◽  
Fan Xu ◽  
Chaoya Bao ◽  
...  

NAC transcription factors (TFs) are plant-specific TFs that play essential roles in plant development; however, the function of NAC TFs in loquat development remains unknown. The natural triploid loquat (Eriobotrya japonica Lindl.), Longquan No.1. B355, has larger organs than its corresponding diploid loquat (B2). Here, we cloned an NAC-like TF (EjNACL47 (NAC-like 47)) from the cDNA of triploid loquat B355 flowers. EjNACL47 has a conserved domain of NAC TFs and is homologous to AtNAC47. Transient expression in tobacco leaves revealed that EjNACL47 localized to the nucleus, and yeast-two-hybrid screening confirmed that the C-terminus displayed transcriptional activity. Interestingly, real-time qRT-PCR indicated that the expression levels of EjNACL47 in leaves and flower organs in triploid loquat (B355) were higher than those in diploid loquat (B2), implying that EjNACL47 might be associated with the larger organ size in B355. Moreover, Arabidopsis lines ectopically expressing EjNACL47 presented obviously larger leaves, flowers, and siliques than the wild-type variant, suggesting that EjNACL47 plays a positive role in Arabidopsis organ enlargement. These results offer insight into the molecular mechanism of NAC TFs involved in regulating organ size in loquat.


2021 ◽  
Author(s):  
Bohm Lee ◽  
Yeonsoo Oh ◽  
Eunhye Cho ◽  
Aaron DiAntonio ◽  
Valeria Cavalli ◽  
...  

DLK is a key regulator of axon regeneration and degeneration in response to neuronal injury. To understand the molecular mechanisms controlling the DLK function, we performed yeast two-hybrid screening analysis and identified FKBPL as a DLK-binding protein that bound to the kinase domain and inhibited the kinase enzymatic activity of DLK. FKBPL regulated DLK stability through ubiquitin-dependent DLK degradation. We tested other members in the FKBP protein family and found that FKBP8 also induced DLK degradation as FKBPL did. We found that Lysine 271 residue in the kinase domain of DLK was a major site of ubiquitination and SUMO3-conjugation and responsible for FKBP8-mediated degradation. In vivo overexpression of FKBP8 delayed progression of axon degeneration and neuronal death following axotomy in sciatic and optic nerves, respectively, although axon regeneration efficiency was not enhanced. This research identified FKBPL and FKBP8 as new DLK-interacting proteins that regulated DLK stability by MG-132 or bafilomycin A1-sensitive protein degradation.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dan Luo ◽  
Cheng Xiong ◽  
Aihua Lin ◽  
Chunli Zhang ◽  
Wenhui Sun ◽  
...  

AbstractAnthocyanins play vital roles in plant stress tolerance and growth regulation. Previously, we reported that the photomorphogenesis-related transcription factor SlBBX20 regulates anthocyanin accumulation in tomato. However, the underlying mechanism remains unclear. Here, we showed that SlBBX20 promotes anthocyanin biosynthesis by binding the promoter of the anthocyanin biosynthesis gene SlDFR, suggesting that SlBBX20 directly activates anthocyanin biosynthesis genes. Furthermore, we found by yeast two-hybrid screening that SlBBX20 interacts with the COP9 signalosome subunit SlCSN5-2, and the interaction was confirmed by bimolecular fluorescence complementation and coimmunoprecipitation assays. SlCSN5 gene silencing led to anthocyanin hyperaccumulation in the transgenic tomato calli and shoots, and SlCSN5-2 overexpression decreased anthocyanin accumulation, suggesting thSlCSN5-2 enhanced the ubiquitination of SlBBX20 and promoted the degradation of SlBBX20 in vivo. Consistently, silencing the SlCSN5-2 homolog in tobacco significantly increased the accumulation of the SlBBX20 protein. Since SlBBX20 is a vital regulator of photomorphogenesis, the SlBBX20-SlCSN5-2 module may represent a novel regulatory pathway in light-induced anthocyanin biosynthesis.


2021 ◽  
pp. 1-58
Author(s):  
Jin-wu Zhou ◽  
Man Zhao ◽  
Wen-liang Rang ◽  
Xiao-yan Zhang ◽  
Zhen-ming Liu ◽  
...  

Background: The toxicity of excessive glutamate release has been implicated in various acute and chronic neurodegenerative conditions. Vesicular glutamate transporters (VGLUTs) are the major mediators for the uptake of glutamate into synaptic vesicles. However, the dynamics and mechanism of this process in glutamatergic neurons are still largely unknown. Objective: This study aimed to investigate the candidate protein partners of VGLUT1 and their regulatory roles in the vesicles in rat brain. Methods: Pull down assay, co-immunoprecipitation assay, or split-ubiquitin membrane yeast two hybrid screening coupled with nanoRPLC-MS/MS were used to identify the candidate protein partners of VGLUT1 in the vesicles in rat brain. The in vitro and in vivo models were used to test effects of AβPP, Atp6ap2, Gja1, and Synataxin on VGLUT1 expression. Results: A total of 255 and 225 proteins and 172 known genes were identified in the pull down assay, co-immunoprecipitation assay, or split-ubiquitin yeast two-hybrid screening respectively. The physiological interactions of SV2A, Syntaxin 12, Gja1, AβPP, and Atp6ap2 to VGLUT1 were further confirmed. Knockdown of Atp6ap2, Gja1, and Synataxin increased VGLUT1 mRNA expression and only knockdown of AβPP increased both mRNA and protein levels of VGLUT1 in PC12 cells. The regulatory function of AβPP on VGLUT1 expression was further confirmed in the in vitro and in vivo models. Conclusion: These results elucidate that the AβPP and VGLUT1 interacts at vesicular level and AβPP plays a role in the regulation of VGLUT1 expression which is essential for maintaining vesicular activities.


Sign in / Sign up

Export Citation Format

Share Document