docosahexaenoic acids
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 37)

H-INDEX

54
(FIVE YEARS 4)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 144
Author(s):  
Michail I. Gladyshev ◽  
Alexander A. Makhrov ◽  
Ilia V. Baydarov ◽  
Stanislava S. Safonova ◽  
Viktor M. Golod ◽  
...  

Fatty acids (FA) of muscle tissue of Salvelinus species and its forms, S. alpinus, S. boganidae, S. drjagini, and S. fontinalis, from six Russian lakes and two aquacultures, were analyzed. Considerable variations in FA compositions and contents were found, including contents of eicosapentaenoic and docosahexaenoic acids (EPA and DHA), which are important indicators of fish nutritive value for humans. As found, contents of EPA+DHA (mg·g−1 wet weight) in muscle tissue of Salvelinus species and forms varied more than tenfold. These differences were supposed to be primarily determined by phylogenetic factors, rather than ecological factors, including food. Two species, S. boganidae and S. drjagini, had the highest EPA+DHA contents in their biomass and thereby could be recommended as promising species for aquaculture to obtain production with especially high nutritive value. Basing on revealed differences in FA composition of wild and farmed fish, levels of 15-17-BFA (branched fatty acids), 18:2NMI (non-methylene interrupted), 20:2NMI, 20:4n-3, and 22:4n-3 fatty acids were recommended for verifying trade label information of fish products on shelves, as the biomarkers to differentiate wild and farmed charr.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 158
Author(s):  
Talat Bashir Ahmed ◽  
Merete Eggesbø ◽  
Rachel Criswell ◽  
Olaf Uhl ◽  
Hans Demmelmair ◽  
...  

Human milk lipids are essential for infant health. However, little is known about the relationship between total milk fatty acid (FA) composition and polar lipid species composition. Therefore, we aimed to characterize the relationship between the FA and polar lipid species composition in human milk, with a focus on differences between milk with higher or lower milk fat content. From the Norwegian Human Milk Study (HUMIS, 2002–2009), a subset of 664 milk samples were analyzed for FA and polar lipid composition. Milk samples did not differ in major FA, phosphatidylcholine, or sphingomyelin species percentages between the highest and lowest quartiles of total FA concentration. However, milk in the highest FA quartile had a lower phospholipid-to-total-FA ratio and a lower sphingomyelin-to-phosphatidylcholine ratio than the lowest quartile. The only FAs associated with total phosphatidylcholine or sphingomyelin were behenic and tridecanoic acids, respectively. Milk FA and phosphatidylcholine and sphingomyelin species containing these FAs showed modest correlations. Associations of arachidonic and docosahexaenoic acids with percentages of phosphatidylcholine species carrying these FAs support the conclusion that the availability of these FAs limits the synthesis of phospholipid species containing them.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2442
Author(s):  
Hanan Al-Adilah ◽  
Tahani Khalaf Al-Sharrah ◽  
Dhia Al-Bader ◽  
Rainer Ebel ◽  
Frithjof Christian Küpper ◽  
...  

The fatty acid (FA) compositions of ten seaweeds representative of Chlorophyta, Rhodophyta, and Ochrophyta from Kuwait in the Arabian Gulf region were determined and are discussed in the context of their potential nutritional perspectives for seaweed valorization. All the seaweeds had higher saturated fatty acid (SFA) and lower monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) contents than those typical of tropical environments. Palmitic, myristic, stearic, oleic, linoleic, α-linolenic, and stearidonic acids were the major FAs detected. Arachidonic, eicosapentaenoic, and docosahexaenoic acids were detected in minor amounts. Conserved fatty acid patterns revealed phylogenetic relationships among phyla, classes, and orders matching the molecular phylogenies at higher taxonomic ranks. Hierarchical clustering analyses clearly segregated different seaweeds (except Codium papillatum and Iyengaria stellata) into distinct groups based on their FA signatures. All but one species (Chondria sp.) had health-beneficial n6/n3 PUFAs (0.33:1–2.94:1) and atherogenic (0.80–2.52) and thrombogenic indices (0.61–5.17). However, low PUFA/SFA contents in most of the species (except Ulva spp.) may limit their utilization in the formulation of PUFA-rich functional foods. Ulva spp. had substantially high PUFAs with PUFA/SFA >0.4, n6/n3 (0.33–0.66) and atherogenic (0.80–1.15) and thrombogenic indices (0.49–0.72), providing substantial potential for their utilization in food and feed applications.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 937
Author(s):  
Dominika Maciejewska-Markiewicz ◽  
Ewa Stachowska ◽  
Viktoria Hawryłkowicz ◽  
Laura Stachowska ◽  
Piotr Prowans

Increased triacylglycerols’ (TAG) synthesis, insulin resistance, and prolonged liver lipid storage might lead to the development of non-alcoholic fatty liver disease (NAFLD). Global prevalence of NAFLD has been estimated to be around 25%, with gradual elevation of this ratio along with the increased content of adipose tissue in a body. The initial stages of NAFLD may be reversible, but the exposition to pathological factors should be limited. As dietary factors greatly influence various disease development, scientists try to find dietary components, helping to alleviate the steatosis. These components include n-3 polyunsaturated (PUFA) fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA). This review focused on the role of resolvins, protectins and merensins in NAFLD.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1817
Author(s):  
Sylvie Hadrová ◽  
Kateřina Sedláková ◽  
Ludmila Křížová ◽  
Svetlana Malyugina

Milk fat is an important nutritional compound in the human diet. From the health point of view, some fatty acids (FAs), particularly long-chain PUFAs such as EPA and DHA, have been at the forefront of interest due to their antibacterial, antiviral, anti-inflammatory, and anti-tumor properties, which play a positive role in the prevention of cardiovascular diseases (CVD), as well as linoleic and γ-linolenic acids, which play an important role in CVD treatment as essential components of phospholipids in the mitochondria of cell membranes. Thus, the modification of the FA profile—especially an increase in the concentration of polyunsaturated FAs and n-3 FAs in bovine milk fat—is desirable. The most effective way to achieve this goal is via dietary manipulations. The effects of various strategies in dairy nutrition have been thoroughly investigated; however, there are some alternative or unconventional feedstuffs that are often used for purposes other than basic feeding or modifying the fatty acid profiles of milk, such as tanniferous plants, herbs and spices, and algae. The use of these foods in dairy diets and their effects on milk fatty acid profile are reviewed in this article. The contents of selected individual FAs (atherogenic, rumenic, linoleic, α-linolenic, eicosapentaenoic, and docosahexaenoic acids) and their combinations; the contents of n3 and n6 FAs; n6/n3 ratios; and atherogenic, health-promoting and S/P indices were used as criteria for assessing the effect of these feeds on the health properties of milk fat.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2061
Author(s):  
Sanjay Basak ◽  
Rahul Mallick ◽  
Antara Banerjee ◽  
Surajit Pathak ◽  
Asim K. Duttaroy

During the last trimester of gestation and for the first 18 months after birth, both docosahexaenoic acid,22:6n-3 (DHA) and arachidonic acid,20:4n-6 (ARA) are preferentially deposited within the cerebral cortex at a rapid rate. Although the structural and functional roles of DHA in brain development are well investigated, similar roles of ARA are not well documented. The mode of action of these two fatty acids and their derivatives at different structural–functional roles and their levels in the gene expression and signaling pathways of the brain have been continuously emanating. In addition to DHA, the importance of ARA has been much discussed in recent years for fetal and postnatal brain development and the maternal supply of ARA and DHA. These fatty acids are also involved in various brain developmental processes; however, their mechanistic cross talks are not clearly known yet. This review describes the importance of ARA, in addition to DHA, in supporting the optimal brain development and growth and functional roles in the brain.


Author(s):  
Sanjay Basak ◽  
Rahul Mallick ◽  
Antara Banerjee ◽  
Surajit Pathak ◽  
Asim K. Duttaroy

During the last trimester of gestation and for the first 18 months after birth, both docosahexaenoic acid,22:6n-3 (DHA) and arachidonic acid,20:4n-6 (ARA) are preferentially deposited within the cerebral cortex at a rapid rate. Although, the structural and functional roles of DHA in brain development are well investigated, similar roles of ARA are not well documented. The mode of action of these two fatty acids and their derivatives at different structural-functional roles and their levels in the gene expression and signaling pathways of the brain have been continuously emanating. In addition to DHA, importance of ARA has been much discussed in recent years for fetal and postnatal brain development and the maternal supply of ARA and DHA. These fatty acids are also involved in various brain developmental processes; however, their mechanistic cross talks are not clearly known yet. This review describes the importance of ARA, in addition to DHA to support the optimal brain development and growth and functional roles in the brain.


2021 ◽  
Vol 8 ◽  
Author(s):  
Daniel Jerónimo ◽  
Ana Isabel Lillebø ◽  
Felisa Rey ◽  
Henrique Koga Ii ◽  
M. Rosário M. Domingues ◽  
...  

Polychaetes can be successfully employed to recover essential fatty acids (EFA) from wasted uneaten aquafeeds present in aquaculture effluents. The optimization of the timeframe required to produce premium ragworms (Hediste diversicolor) biomass rich in EFA is paramount to make available to the aquafeeds industry another alternative ingredient to fish meal and fish oil. The present study aimed to evaluate the potential enrichment of ragworms fatty acid (FA) profile when fed a commercial aquafeed during 10, 20, and 40 days (D10, D20, and D40) under different combinations of water temperature (20 and 25°C) and salinity (15, 20, and 25). Total FA incremented progressively overtime, with D40 polychaetes exhibiting average values ranging between 70 and 90 μg mg–1 DW. The average values of n-6 FA ranged between 13 and 17 μg mg–1 DW, while that of n-3 FA varied between 17 and 19 μg mg–1 DW at D40. No significant differences were found in the FA profile of H. diversicolor cultured under different combinations of temperature and salinity. The FA profile of cultured polychaetes exhibited between 28 and 31% dissimilarity from that of wild conspecifics and displayed a higher content of two essential n-3 FA: eicosapentaenoic (20:5 n-3, EPA) and docosahexaenoic acids (22:6 n-3, DHA) (values ranging between 9.6–11.2% and 4.3–5.0% of total FA, respectively). A higher similarity in FA profile was recorded between D40 polychaetes and aquafeed than with initially stocked or wild specimens. Palmitic (16:0), oleic (18:1 n-9), linoleic (18:2 n-6), eicosadienoic (20:2 n-6), EPA (20:5 n-3), and DHA (22:6 n-3) were the FA whose concentration exhibited the highest increment. Evidence of de novo FA biosynthesis was observed through the formation of some FA that were neither present in the initially stocked biomass, nor in the aquafeed supplied, such as 5,11-eicosadienoate (Δ5,1120:2), 7,13,16-docosatrienoate (Δ7,13,1622:3), dihomo-gamma-linolenic (20:3 n-6), eicosatrienoic (20:3 n-3) and eicosatetraenoic (20:4 n-3) acids. A plateau of total FA, n-6, and n-3 FA was not reached over the study period. Overall, the present study highlights the potential of H. diversicolor as an extractive species for integrated multi-trophic aquaculture (IMTA) applications.


2021 ◽  
Vol 15 (4) ◽  
pp. e0009388
Author(s):  
Nieli Rodrigues da Costa Faria ◽  
Adriano Britto Chaves-Filho ◽  
Luiz Carlos Junior Alcantara ◽  
Isadora Cristina de Siqueira ◽  
Juan Ignacio Calcagno ◽  
...  

The 2015–2016 Zika virus (ZIKV) outbreak in Brazil was remarkably linked to the incidence of microcephaly and other deleterious clinical manifestations, including eye abnormalities, in newborns. It is known that ZIKV targets the placenta, triggering an inflammatory profile that may cause placental insufficiency. Transplacental lipid transport is delicately regulated during pregnancy and deficiency on the delivery of lipids such as arachidonic and docosahexaenoic acids may lead to deficits in both brain and retina during fetal development. Here, plasma lipidome profiles of ZIKV exposed microcephalic and normocephalic newborns were compared to non-infected controls. Our results reveal major alterations in circulating lipids from both ZIKV exposed newborns with and without microcephaly relative to controls. In newborns with microcephaly, the plasma concentrations of hydroxyoctadecadienoic acid (HODE), primarily as 13-HODE isomer, derived from linoleic acid were higher as compared to normocephalic ZIKV exposed newborns and controls. Total HODE concentrations were also positively associated with levels of other oxidized lipids and several circulating free fatty acids in newborns, indicating a possible plasma lipidome signature of microcephaly. Moreover, higher concentrations of lysophosphatidylcholine in ZIKV exposed normocephalic newborns relative to controls suggest a potential disruption of polyunsaturated fatty acids transport across the blood-brain barrier of fetuses. The latter data is particularly important given the neurocognitive and neurodevelopmental abnormalities observed in follow-up studies involving children with antenatal ZIKV exposure, but normocephalic at birth. Taken together, our data reveal that plasma lipidome alterations associated with antenatal exposure to ZIKV could contribute to identification and monitoring of the wide spectrum of clinical phenotypes at birth and further, during childhood.


Sign in / Sign up

Export Citation Format

Share Document