osteogenic factors
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 21)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
pp. 153537022110529
Author(s):  
Shivaani Kirankumar ◽  
Narasimman Gurusamy ◽  
Sheeja Rajasingh ◽  
Vinoth Sigamani ◽  
Jayavardini Vasanthan ◽  
...  

The process of bone repair has always been a natural mystery. Although bones do repair themselves, supplemental treatment is required for the initiation of the self-regeneration process. Predominantly, surgical procedures are employed for bone regeneration. Recently, cell-based therapy for bone regeneration has proven to be more effective than traditional methods, as it eliminates the immune risk and painful surgeries. In clinical trials, various stem cells, especially mesenchymal stem cells, have shown to be more efficient for the treatment of several bone-related diseases, such as non-union fracture, osteogenesis imperfecta, osteosarcoma, and osteoporosis. Furthermore, the stem cells grown in a suitable three-dimensional scaffold support were found to be more efficient for osteogenesis. It has been shown that the three-dimensional bioscaffolds support and simulate an in vivo environment, which helps in differentiation of stem cells into bone cells. Bone regeneration in patients with bone disorders can be improved through modification of stem cells with several osteogenic factors or using stem cells as carriers for osteogenic factors. In this review, we focused on the various types of stem cells and scaffolds that are being used for bone regeneration. In addition, the molecular mechanisms of various transcription factors, signaling pathways that support bone regeneration and the senescence of the stem cells, which limits bone regeneration, have been discussed.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1277
Author(s):  
Daniel García-Sánchez ◽  
Alberto González-González ◽  
Patricia García-García ◽  
Ricardo Reyes ◽  
María Isabel Pérez-Núñez ◽  
...  

Mesenchymal stem cell (MSC) transplantation has emerged as a promising approach for bone regeneration. Importantly, the beneficial effects of MSCs can be improved by modulating the expression levels of specific genes to stimulate MSC osteogenic differentiation. We have previously shown that Smurf1 silencing by using Locked Nucleic Acid-Antisense Oligonucleotides, in combination with a scaffold that sustainably releases low doses of BMP-2, was able to increase the osteogenic potential of MSCs in the presence of BMP-2 doses significantly smaller than those currently used in the clinic. This would potentially allow an important reduction in this protein in MSs-based treatments, and thus of the side effects linked to its administration. We have further improved this system by specifically targeting the Wnt pathway modulator Sfrp1. This approach not only increases MSC bone regeneration efficiency, but is also able to induce osteogenic differentiation in osteoporotic human MSCs, bypassing the need for BMP-2 induction, underscoring the regenerative potential of this system. Achieving successful osteogenesis with the sole use of LNA-ASOs, without the need of administering pro-osteogenic factors such as BMP-2, would not only reduce the cost of treatments, but would also open the possibility of targeting these LNA-ASOs specifically to MSCs in the bone marrow, allowing us to treat systemic bone loss such as that associated with osteoporosis.


Author(s):  
Atsumu Kouketsu ◽  
Keiko Matsui ◽  
Tadashi Kawai ◽  
Yushi Ezoe ◽  
Tetsu Takahashi ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 6811
Author(s):  
Masako Tabuchi ◽  
Kosuke Hamajima ◽  
Miyuki Tanaka ◽  
Takeo Sekiya ◽  
Makoto Hirota ◽  
...  

It is a significant challenge for a titanium implant, which is a bio-inert material, to recruit osteogenic factors, such as osteoblasts, proteins and blood effectively when these are contained in a biomaterial. The objective of this study was to examine the effect of ultraviolet (UV)-treatment of titanium on surface wettability and the recruitment of osteogenic factors when they are contained in an atelocollagen sponge. UV treatment of a dental implant made of commercially pure titanium was performed with UV-light for 12 min immediately prior to the experiments. Superhydrophilicity on dental implant surfaces was generated with UV-treatment. The collagen sponge containing blood, osteoblasts, or albumin was directly placed on the dental implant. Untreated implants absorbed only a little blood from the collagen sponge, while the UV-treated implants absorbed blood rapidly and allowed it to spread widely, almost over the entire implant surface. Blood coverage was 3.5 times greater for the UV-treated implants (p < 0.001). Only 6% of the osteoblasts transferred from the collagen sponge to the untreated implants, whereas 16% of the osteoblasts transferred to the UV-treated implants (p < 0.001). In addition, a weight ratio between transferred albumin on the implant and measured albumin adsorbed on the implant was 17.3% in untreated implants and 38.5% in UV-treated implants (p < 0.05). These results indicated that UV treatment converts a titanium surface into a superhydrophilic and bio-active material, which could recruite osteogenic factors even when they were contained in a collagen sponge. The transfer and subsequent diffusion and adsorption efficacy of UV-treated titanium surfaces could be useful for bone formation when titanium surfaces and osteogenic factors are intervened with a biomaterial.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A538-A538
Author(s):  
Teagan James ◽  
Patrick Everett Chappell

Abstract Estrogen (E2) is essential for multiple physiological effects in females, ensuring maximum reproductive fitness and maintaining skeletal homeostasis. E2 has been shown to stimulate cancellous bone formation via activation of estrogen receptor alpha (ERα), an effect widely accepted to be mediated directly at bone. A recent landmark study (Herber et al., Nat Commun 2019) demonstrated bone density increases in female mice harboring ERα-deletions specifically in arcuate Kiss-1 neurons. In this study, bone from transgenic females showed higher osteoblast functioning and increases in the expression of sp7 and runx2, positing a direct neural-bone regulatory axis altered by circulating E2 acting in brain. Our laboratory has used two immortalized Kisspeptin (Kiss1)-expressing and -secreting cell lines, KTaR-1 (representative of female arcuate Kiss-1 neurons) and KTaV-3 cells (representative of female AVPV Kiss-1 neurons) as models to explore the role of Kiss-1 in multiple physiological regulatory contexts. We recently determined that factors in the media of female ARC-derived KTaR-1 cells can affect parameters of osteoblast function in vitro, including increases in sp7 and runx2 expression, and formation of bone matrix (evaluated by Alizarin Red assay). Exposure of canine osteosarcoma cells to conditioned media from KTaR-1 cells led to increases in sp7 expression in an E2-dependent manner, and 24h E2-deprivation of these neurons stimulated secretion of osteogenic factors. In this current study, we have used LCMS-MS proteomic analysis to determine the contents of exosomes isolated from Kisspeptin neurons under varying E2 exposure conditions in vitro. Preliminary results reveal ~150-170 proteins up-regulated by E2 exposure and ~200-220 proteins downregulated by E2 exposure in exosomes of both KTaR-1 and KTaV-3 Kisspeptin neurons. Estrogen-regulated Kiss-1 exosomal proteins include several candidates involved in bone remodeling (pentraxin, osteonectin, osteoclast-stimulating factor-1) and neuronal synaptic plasticity and signaling (annexins, semaphorins, connexins). Current work is exploring the effects of exposure of purified exosomes on morphology and gene expression in immortalized GnRH neurons and osteoblasts. While further study is required, initial results suggest that exosomes may represent additional cellular communication pathways utilized by Kisspeptin neurons to elicit changes in brain and bone.


Author(s):  
Kari Hanson ◽  
Carly Isder ◽  
Kristen Shogren ◽  
Anthony L. Mikula ◽  
Lichun Lu ◽  
...  

OBJECTIVE The use of intrawound vancomycin powder in spine surgery has been shown to decrease the rate of surgical site infections; however, the optimal dose is unknown. High-dose vancomycin inhibits osteoblast proliferation in vitro and may decrease the rate of solid arthrodesis. Bone marrow–derived mesenchymal stem cells (BMSCs) are multipotent cells that are a source of osteogenesis in spine fusions. The purpose of this study was to determine the effects of vancomycin on rat BMSC viability and differentiation in vitro. METHODS BMSCs were isolated from the femurs of immature female rats, cultured, and then split into two equal groups; half were treated to stimulate osteoblastic differentiation and half were not. Osteogenesis was stimulated by the addition of 50 µg/mL l-ascorbic acid, 10 mM β-glycerol phosphate, and 0.1 µM dexamethasone. Vancomycin was added to cell culture medium at concentrations of 0, 0.04, 0.4, or 4 mg/mL. Early differentiation was determined by alkaline phosphatase activity (4 days posttreatment) and late differentiation by alizarin red staining for mineralization (9 days posttreatment). Cell viability was determined at both the early and late time points by measurement of formazan colorimetric product. RESULTS Viability within the first 4 days decreased with high-dose vancomycin treatment, with cells receiving 4 mg/mL vancomycin having 40%–60% viability compared to the control. A gradual decrease in alizarin red staining and nodule formation was observed with increasing vancomycin doses. In the presence of the osteogenic factors, vancomycin did not have deleterious effects on alkaline phosphatase activity, whereas a trend toward reduced activity was seen in the absence of osteogenic factors when compared to osteogenically treated cells. CONCLUSIONS Vancomycin reduced BMSC viability and impaired late osteogenic differentiation with high-dose treatment. Therefore, the inhibitory effects of high-dose vancomycin on spinal fusion may result from both reduced BMSC viability and some impairment of osteogenic differentiation.


2021 ◽  
Vol 22 (5) ◽  
pp. 2379
Author(s):  
Enrico Ragni ◽  
Carlotta Perucca Orfei ◽  
Alessandro Bidossi ◽  
Elena De Vecchi ◽  
Natale Francaviglia ◽  
...  

Fusion cages composed of titanium and its alloys are emerging as valuable alternative to standard polyetheretherketone (PEEK) ones routinely used in cervical and lumbar spine surgery. Aim of this study was to evaluate osteo-inductive and osteo-conductive ability of an innovative trabecular titanium (T-Ti) scaffold on human mesenchymal stem cells (hMSCs), in both absence and presence of biochemical osteogenic stimuli. Same abilities were assessed on PEEK and standard 2D plastic surface, the latter meant as gold-standard for in vitro differentiation studies. hMSCs adhered and colonized both T-Ti and PEEK scaffolds. In absence of osteogenic factors, T-Ti triggered osteogenic induction of MSCs, as demonstrated by alkaline phosphatase activity and calcium deposition increments, while PEEK and standard 2D did not. Addition of osteogenic stimuli reinforced osteogenic differentiation of hMSCs cultured on T-Ti in a significantly higher manner with respect to standard 2D plastic culture surfaces, whereas PEEK almost completely abolished the process. T-Ti driven differentiation towards osteoblasts was confirmed by gene and marker expression analyses, even in absence of osteogenic stimuli. These results clearly indicate superior in vitro osteo-inductive and osteo-conductive capacity of T-Ti compared to PEEK, and make ground for further studies supporting the use of T-Ti cages to improve bone fusion.


Author(s):  
Paola Aprile ◽  
Daniel J. Kelly

The limited ability of articular cartilage to self-repair has motivated the development of tissue engineering strategies that aim to harness the regenerative potential of mesenchymal stem/marrow stromal cells (MSCs). Understanding how environmental factors regulate the phenotype of MSCs will be central to unlocking their regenerative potential. The biophysical environment is known to regulate the phenotype of stem cells, with factors such as substrate stiffness and externally applied mechanical loads known to regulate chondrogenesis of MSCs. In particular, hydrostatic pressure (HP) has been shown to play a key role in the development and maintenance of articular cartilage. Using a collagen-alginate interpenetrating network (IPN) hydrogel as a model system to tune matrix stiffness, this study sought to investigate how HP and substrate stiffness interact to regulate chondrogenesis of MSCs. If applied during early chondrogenesis in soft IPN hydrogels, HP was found to downregulate the expression of ACAN, COL2, CDH2 and COLX, but to increase the expression of the osteogenic factors RUNX2 and COL1. This correlated with a reduction in SMAD 2/3, HDAC4 nuclear localization and the expression of NCAD. It was also associated with a reduction in cell volume, an increase in the average distance between MSCs in the hydrogels and a decrease in their tendency to form aggregates. In contrast, the delayed application of HP to MSCs grown in soft hydrogels was associated with increased cellular volume and aggregation and the maintenance of a chondrogenic phenotype. Together these findings demonstrate how tailoring the stiffness and the timing of HP exposure can be leveraged to regulate chondrogenesis of MSCs and opens alternative avenues for developmentally inspired strategies for cartilage tissue regeneration.


Author(s):  
Rodrigo V.P. Neves ◽  
Hugo Luca Corrêa ◽  
Lysleine Alves de Deus ◽  
Andrea Lucena Reis ◽  
Michel Kendy Souza ◽  
...  

This study compared the effectiveness of dynamic resistance training (DRT) versus isometric RT (IRT) on osteogenesis and hormonal mechanisms involved in maintenance hemodialysis (MHD) patients. One hundred and ninety-three MHD patients were randomized into three groups: control (CTL; n=60), DRT (n=66), and IRT (n=67). A first visit was required for an anamnesis to evaluate the number of medications, biochemical and anthropometric measurements (dialysis adequacy, creatinine, urea, body mass, height, and body mass index). Grip strength, bone mineral density (BMD), and renal-bone markers were assessed pre- and post-protocol. The DRT and IRT training was six months with a frequency of three times per week, on alternate days. Each training session consisted of 3 sets of 8 to 12 repetitions at lower and moderate intensities. Both training sessions were prescribed approximately one-hour prior to dialysis. Statistical significances were adopted with p<0.05. There was a greater dropout in the IRT group (24%) as compared with the DRT group (14%), which in turn had less adverse clinical effects (67%, 24%, 61% for CTL, DRT, IRT, respectively). DRT promoted gains in BMD in different body locations, in addition to increasing pro-osteogenic factors (Klotho and calcitriol), and reducing those related to bone loss, such as sclerostin, FGF23, and PTH. There was an improvement in Ca × PO43 for DRT, while these benefits did not occur in the IRT group (p<0.05). These novel findings suggest that the DRT generates biopositive adaptations in bone tissue in MHD and can be used as a non-pharmacological strategy to improve BMD.


Sign in / Sign up

Export Citation Format

Share Document