multiple light scattering
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 18)

H-INDEX

26
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260279
Author(s):  
Daphné Coache ◽  
Mihaela Friciu ◽  
V. Gaëlle Roullin ◽  
Marianne Boulé ◽  
Jean-Marc Forest ◽  
...  

The present study aimed to assess the stability of clonidine hydrochloride oral liquids (20-μg/mL) prepared from two different generic tablets in Ora-Blend and stored in amber plastic bottles. Physical and chemical stabilities were evaluated over a period of 90 days at 25°C. Analytical challenges were overcome with the development of a new extraction procedure based on solid phase extraction to ensure efficient clonidine hydrochloride quantification. The absence of physical instabilities, evaluated by qualitative and quantitative measurements (static multiple light scattering), as well as the absence of chemical instabilities, evidenced by a stability-indicating HPLC-UV method, confirmed that a beyond-use date of 90 days was appropriate for these compounded oral liquids.


2021 ◽  
Author(s):  
Michael Sandmann

Abstract Objective Due to multiple light scattering that occurs inside and between cells, quantitative optical spectroscopy in turbid biological suspensions is still a major challenge. This includes also optical in-line determination of biomass in bioprocessing. Photon Density Wave (PDW) spectroscopy, a technique based on multiple light scattering, enables the independent and absolute determination of optical key parameters of concentrated cell suspensions, which allow to determine biomass during cultivation. Results A unique reactor type, called “mesh ultra-thin layer PBR” was used to create a highly concentrated algal suspension. PDW spectroscopy measurements were carried out continuously in the reactor without any need of sampling or sample preparation, over 3 weeks, and with 10-minutes time resolution. Conventional dry matter content and coulter counter measurements have been employed as established off-line reference analysis. The PBR allowed peak cell dry weight (CDW) of 33.4 g L−1. It is shown that the reduced scattering coefficient determined by PDW spectroscopy is strongly correlated with the biomass concentration in suspension and is thus suitable for process understanding. The reactor in combination with the fiber-optical measurement approach will lead to a better process management.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeonghun Oh ◽  
KyeoReh Lee ◽  
YongKeun Park

AbstractAbsorption spectroscopy is widely used to detect samples with spectral specificity. Here, we propose and demonstrate a method for enhancing the sensitivity of absorption spectroscopy. Exploiting multiple light scattering generated by a boron nitride (h-BN) scattering cavity, the optical path lengths of light inside a diffusive reflective cavity are significantly increased, resulting in more than ten times enhancement of sensitivity in absorption spectroscopy. We demonstrate highly sensitive spectral measurements of low concentrations of malachite green and crystal violet aqueous solutions. Because this method only requires the addition of a scattering cavity to existing absorption spectroscopy, it is expected to enable immediate and widespread applications in various fields, from analytical chemistry to environmental sciences.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1582
Author(s):  
Mohsen Ramezani ◽  
Giovanna Ferrentino ◽  
Ksenia Morozova ◽  
Matteo Scampicchio

The present paper investigates the use of multiple light scattering for the monitoring of milk fermentation. The experiments were performed on milk fermented with different starter concentrations (0.05% to 4.5% (w/w) at temperatures from 36 to 44 °C and in the presence of antibiotics at concentrations up to 100 µg/kg. The fermentation was monitored continuously by using a multiple light scattering technique and simultaneously by a pH meter, a rheometer and a texture analyzer. The backscattering signal recorded by multiple light scattering measurements was correlated with the changes in pH, rheological parameters and firmness of the samples along the fermentation. A gelation time of 120 min was obtained when the highest concentration of starter (4.5%, w/w) and incubation temperature of 44 °C were used. These results were confirmed by the pH, rheological and texture monitoring. The analysis of backscattering spectra allowed the detection of the effect of antibiotic on the gel formation even at low concentrations (1.3 µg/kg). Overall, the results highlighted the advantages of using a multiple light scattering technique as quality control tool for online monitoring of milk fermentation.


2021 ◽  
Author(s):  
◽  
J. N. Mendoza Chavarría

Spectral unmixing has proven to be a great tool for the analysis of hyperspectral data, with linear mixing models (LMMs) being the most used in the literature. Nevertheless, due to the limitations of the LMMs to accurately describe the multiple light scattering effects in multi and hyperspectral imaging, new mixing models have emerged to describe nonlinear interactions. In this paper, we propose a new nonlinear unmixing algorithm based on a multilinear mixture model called Non-linear Extended Blind Endmember and Abundance Extraction (NEBEAE), which is based on a linear unmixing method established in the literature. The results of this study show that proposed method decreases the estimation errors of the spectral signatures and abundance maps, as well as the execution time with respect the state of the art methods.


Sign in / Sign up

Export Citation Format

Share Document