positively charged
Recently Published Documents


TOTAL DOCUMENTS

3417
(FIVE YEARS 1109)

H-INDEX

96
(FIVE YEARS 27)

2022 ◽  
Vol 118 ◽  
pp. 112-121
Author(s):  
Yongjiao Xiong ◽  
Xiangfeng Huang ◽  
Lexue Li ◽  
Wanqi Liu ◽  
Jialu Zhang ◽  
...  

2022 ◽  
Vol 644 ◽  
pp. 119942
Author(s):  
Ming-Bang Wu ◽  
Hao Ye ◽  
Zhi-Yuan Zhu ◽  
Guo-Tao Chen ◽  
Lu-Lin Ma ◽  
...  

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 290
Author(s):  
Zachary Graber ◽  
Desmond Owusu Kwarteng ◽  
Shannon M. Lange ◽  
Yannis Koukanas ◽  
Hady Khalifa ◽  
...  

Diacylglycerol pyrophosphate (DGPP) is an anionic phospholipid formed in plants, yeast, and parasites under multiple stress stimuli. It is synthesized by the phosphorylation action of phosphatidic acid (PA) kinase on phosphatidic acid, a signaling lipid with multifunctional properties. PA functions in the membrane through the interaction of its negatively charged phosphomonoester headgroup with positively charged proteins and ions. DGPP, like PA, can interact electrostatically via the electrostatic-hydrogen bond switch mechanism but differs from PA in its overall charge and shape. The formation of DGPP from PA alters the physicochemical properties as well as the structural dynamics of the membrane. This potentially impacts the molecular and ionic binding of cationic proteins and ions with the DGPP enriched membrane. However, the results of these important interactions in the stress response and in DGPP’s overall intracellular function is unknown. Here, using 31P MAS NMR, we analyze the effect of the interaction of low DGPP concentrations in model membranes with the peptides KALP23 and WALP23, which are flanked by positively charged Lysine and neutral Tryptophan residues, respectively. Our results show a significant effect of KALP23 on the charge of DGPP as compared to WALP23. There was, however, no significant effect on the charge of the phosphomonoester of DGPP due to the interaction with positively charged lipids, dioleoyl trimethylammonium propane (DOTAP) and dioleoyl ethyl-phosphatidylcholine (EtPC). Divalent calcium and magnesium cations induce deprotonation of the DGPP headgroup but showed no noticeable differences on DGPP’s charge. Our results lead to a novel model for DGPP—protein interaction.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Cristina Florentina Chirila ◽  
Viorica Stancu ◽  
Georgia Andra Boni ◽  
Iuliana Pasuk ◽  
Lucian Trupina ◽  
...  

AbstractFe (acceptor) and Nb (donor) doped epitaxial Pb(Zr0.2Ti0.8)O3 (PZT) films were grown on single crystal SrTiO3 substrates and their electric properties were compared to those of un-doped PZT layers deposited in similar conditions. All the films were grown from targets produced from high purity precursor oxides and the doping was in the limit of 1% atomic in both cases. The remnant polarization, the coercive field and the potential barriers at electrode interfaces are different, with lowest values for Fe doping and highest values for Nb doping, with un-doped PZT in between. The dielectric constant is larger in the doped films, while the effective density of charge carriers is of the same order of magnitude. An interesting result was obtained from piezoelectric force microscopy (PFM) investigations. It was found that the as-grown Nb-doped PZT has polarization orientated upward, while the Fe-doped PZT has polarization oriented mostly downward. This difference is explained by the change in the conduction type, thus in the sign of the carriers involved in the compensation of the depolarization field during the growth. In the Nb-doped film the majority carriers are electrons, which tend to accumulate to the growing surface, leaving positively charged ions at the interface with the bottom SrRuO3 electrode, thus favouring an upward orientation of polarization. For Fe-doped film the dominant carriers are holes, thus the sign of charges is opposite at the growing surface and the bottom electrode interface, favouring downward orientation of polarization. These findings open the way to obtain p-n ferroelectric homojunctions and suggest that PFM can be used to identify the type of conduction in PZT upon the dominant direction of polarization in the as-grown films.


Author(s):  
Ewelina Matras ◽  
Anna Gorczyca ◽  
Ewa Pociecha ◽  
Sebastian Wojciech Przemieniecki ◽  
Magdalena Oćwieja

AbstractThe aim of the research was to evaluate the effect of three types of silver nanoparticles (AgNPs) with different physicochemical properties and silver ions delivered in the form of silver nitrate (AgNO3) at the concentration of 50 mg L−1 on germination and initial growth of monocots (common wheat, sorghum) and dicots (garden cress, white mustard). The AgNPs were prepared using trisodium citrate (TCSB-AgNPs), tannic acid (TA-AgNPs), and cysteamine hydrochloride (CHSB-AgNPs). They exhibited comparable shape, size distribution, and an average size equal to 15 ± 3 nm which was confirmed with the use of transmission electron microscopy. The electrokinetic characteristics revealed that CHSB-AgNPs have positive, whereas TCSB-AgNPs and TA-AgNPs negative surface charge. First, toxicity of the silver compounds was assessed using the Phytotestkit test. Next, after transferring seedlings to pots, shoot length, leaf surface, shoot dry mass, electrolyte leakage measurement, and photosystem II (PSII) efficiency were determined. AgNPs and silver ions delivered in the form of AgNO3 reduced root and shoots length of common wheat, sorghum, and garden cress; leaves surface of garden cress and white mustard; and shoots dry mass of white mustard. The positively charged CHSB-AgNPs and silver ions delivered in the form of AgNO3 showed the greatest inhibition effect. Moreover, silver ions and positively charged CHSB-AgNPs were more toxic to PSII of model plants than negatively charged TCSB-AgNPs and TA-AgNPs. AgNPs impact differed in the case of monocots and dicots, but the size of the changes was not significant, so it concerned individual parameters. The results revealed the interaction strength, which was generally similar in all tested plants, i.e., increasing negative effect in sequence TCSB-AgNPs < TA-AgNPs < silver ions delivered in the form of AgNO3 < CHSB-AgNPs.


2022 ◽  
Vol 119 (3) ◽  
pp. e2115135119
Author(s):  
Bhawakshi Punia ◽  
Srabanti Chaudhury ◽  
Anatoly B. Kolomeisky

Catalysis is a method of accelerating chemical reactions that is critically important for fundamental research as well as for industrial applications. It has been recently discovered that catalytic reactions on metal nanoparticles exhibit cooperative effects. The mechanism of these observations, however, remains not well understood. In this work, we present a theoretical investigation on possible microscopic origin of cooperative communications in nanocatalysts. In our approach, the main role is played by positively charged holes on metal surfaces. A corresponding discrete-state stochastic model for the dynamics of holes is developed and explicitly solved. It is shown that the observed spatial correlation lengths are given by the average distances migrated by the holes before they disappear, while the temporal memory is determined by their lifetimes. Our theoretical approach is able to explain the universality of cooperative communications as well as the effect of external electric fields. Theoretical predictions are in agreement with experimental observations. The proposed theoretical framework quantitatively clarifies some important aspects of the microscopic mechanisms of heterogeneous catalysis.


2022 ◽  
Vol 5 (4) ◽  
pp. e202101078
Author(s):  
Tunahan Ergünay ◽  
Özgecan Ayhan ◽  
Arda B Celen ◽  
Panagiota Georgiadou ◽  
Emre Pekbilir ◽  
...  

CRISPR/Cas9 is a popular genome editing technology. Although widely used, little is known about how this prokaryotic system behaves in humans. An unwanted consequence of eukaryotic Cas9 expression is off-target DNA binding leading to mutagenesis. Safer clinical implementation of CRISPR/Cas9 necessitates a finer understanding of the regulatory mechanisms governing Cas9 behavior in humans. Here, we report our discovery of Cas9 sumoylation and ubiquitylation, the first post-translational modifications to be described on this enzyme. We found that the major SUMO2/3 conjugation site on Cas9 is K848, a key positively charged residue in the HNH nuclease domain that is known to interact with target DNA and contribute to off-target DNA binding. Our results suggest that Cas9 ubiquitylation leads to decreased stability via proteasomal degradation. Preventing Cas9 sumoylation through conversion of K848 into arginine or pharmacologic inhibition of cellular sumoylation enhances the enzyme’s turnover and diminishes guide RNA-directed DNA binding efficacy, suggesting that sumoylation at this site regulates Cas9 stability and DNA binding. More research is needed to fully understand the implications of these modifications for Cas9 specificity.


Sign in / Sign up

Export Citation Format

Share Document