peripheral membrane protein
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 18)

H-INDEX

41
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Hoi Tong Wong ◽  
Victoria Cheung ◽  
Daniel J. Salamango

ABSTRACTLike many pathogenic viruses, SARS-CoV-2 must overcome interferon (IFN)-mediated host defenses for infection establishment. To achieve this, SARS-CoV-2 deploys overlapping mechanisms to antagonize IFN production and signaling. The strongest IFN antagonist is the accessory protein ORF6, which localizes to multiple membranous compartments, including the nuclear envelope, where it directly binds the nuclear pore components Nup98-Rae1 to inhibit nuclear translocation of activated STAT1/IRF3 transcription factors. However, a direct cause-and-effect relationship between ORF6 localization and IFN antagonism has yet to be explored experimentally. Here, we use extensive mutagenesis studies to define the structural determinants required for steady-state localization and demonstrate that mis-localized ORF6 variants can still potently inhibit nuclear trafficking and IFN signaling. Additionally, expression of a peptide that mimics the ORF6/Nup98 interaction domain robustly inhibited nuclear trafficking. Furthermore, pharmacologic and mutational approaches combined to suggest that ORF6 is likely a peripheral-membrane protein, opposed to being a transmembrane protein as previously speculated. Thus, ORF6 localization and IFN antagonism are independent activities, which raises the possibility that ORF6 may have additional functions within membrane networks to enhance virus replication.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xihua Yue ◽  
Neeraj Tiwari ◽  
Lianhui Zhu ◽  
Hai Dang Truong Ngo ◽  
Jae-Min Lim ◽  
...  

AbstractAltered glycosylation plays an important role during development and is also a hallmark of increased tumorigenicity and metastatic potentials of several cancers. We report here that Tankyrase-1 (TNKS1) controls protein glycosylation by Poly-ADP-ribosylation (PARylation) of a Golgi structural protein, Golgin45, at the Golgi. TNKS1 is a Golgi-localized peripheral membrane protein that plays various roles throughout the cell, ranging from telomere maintenance to Glut4 trafficking. Our study indicates that TNKS1 localization to the Golgi apparatus is mediated by Golgin45. TNKS1-dependent control of Golgin45 protein stability influences protein glycosylation, as shown by Glycomic analysis. Further, FRAP experiments indicated that Golgin45 protein level modulates Golgi glycosyltransferease trafficking in Rab2-GTP-dependent manner. Taken together, these results suggest that TNKS1-dependent regulation of Golgin45 may provide a molecular underpinning for altered glycosylation at the Golgi during development or oncogenic transformation.


2021 ◽  
Vol 22 (16) ◽  
pp. 9060 ◽  
Author(s):  
Yichen Ju ◽  
Haocheng Bai ◽  
Linzhu Ren ◽  
Liying Zhang

The endosomal sorting complex required for transport (ESCRT) system consists of peripheral membrane protein complexes ESCRT-0, -I, -II, -III VPS4-VTA1, and ALIX homodimer. This system plays an important role in the degradation of non-essential or dangerous plasma membrane proteins, the biogenesis of lysosomes and yeast vacuoles, the budding of most enveloped viruses, and promoting membrane shedding of cytokinesis. Recent results show that exosomes and the ESCRT pathway play important roles in virus infection. This review mainly focuses on the roles of exosomes and the ESCRT pathway in virus assembly, budding, and infection of enveloped viruses. The elaboration of the mechanism of exosomes and the ESCRT pathway in some enveloped viruses provides important implications for the further study of the infection mechanism of other enveloped viruses.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 583
Author(s):  
Suzanne I. Sandin ◽  
David M. Gravano ◽  
Christopher J. Randolph ◽  
Meenakshi Sharma ◽  
Eva de Alba

Saposin C (sapC) is a lysosomal, peripheral-membrane protein displaying liposome fusogenic capabilities. Proteoliposomes of sapC and phosphatidylserine have been shown to be toxic for cancer cells and are currently on clinical trial to treat glioblastoma. As proof-of-concept, we show two strategies to enhance the applications of sapC proteoliposomes: (1) Engineering chimeras composed of sapC to modulate proteoliposome function; (2) Engineering sapC to modify its lipid binding capabilities. In the chimera design, sapC is linked to a cell death-inducing peptide: the BH3 domain of the Bcl-2 protein PUMA. We show by solution NMR and dynamic light scattering that the chimera is functional at the molecular level by fusing liposomes and by interacting with prosurvival Bcl-xL, which is PUMA’s known mechanism to induce cell death. Furthermore, sapC-PUMA proteoliposomes enhance cytotoxicity in glioblastoma cells compared to sapC. Finally, the sapC domain of the chimera has been engineered to optimize liposome binding at pH close to physiological values as protein–lipid interactions are favored at acidic pH in the native protein. Altogether, our results indicate that the properties of sapC proteoliposomes can be modified by engineering the protein surface and by the addition of small peptides as fusion constructs.


2021 ◽  
Vol 118 (6) ◽  
pp. e2018355118
Author(s):  
Keisuke Shimada ◽  
Soojin Park ◽  
Haruhiko Miyata ◽  
Zhifeng Yu ◽  
Akane Morohoshi ◽  
...  

The mammalian sperm midpiece has a unique double-helical structure called the mitochondrial sheath that wraps tightly around the axoneme. Despite the remarkable organization of the mitochondrial sheath, the molecular mechanisms involved in mitochondrial sheath formation are unclear. In the process of screening testis-enriched genes for functions in mice, we identified armadillo repeat-containing 12 (ARMC12) as an essential protein for mitochondrial sheath formation. Here, we engineered Armc12-null mice, FLAG-tagged Armc12 knock-in mice, and TBC1 domain family member 21 (Tbc1d21)-null mice to define the functions of ARMC12 in mitochondrial sheath formation in vivo. We discovered that absence of ARMC12 causes abnormal mitochondrial coiling along the flagellum, resulting in reduced sperm motility and male sterility. During spermiogenesis, sperm mitochondria in Armc12-null mice cannot elongate properly at the mitochondrial interlocking step which disrupts abnormal mitochondrial coiling. ARMC12 is a mitochondrial peripheral membrane protein and functions as an adherence factor between mitochondria in cultured cells. ARMC12 in testicular germ cells interacts with mitochondrial proteins MIC60, VDAC2, and VDAC3 as well as TBC1D21 and GK2, which are required for mitochondrial sheath formation. We also observed that TBC1D21 is essential for the interaction between ARMC12 and VDAC proteins in vivo. These results indicate that ARMC12 uses integral mitochondrial membrane proteins VDAC2 and VDAC3 as scaffolds to link mitochondria and works cooperatively with TBC1D21. Thus, our studies have revealed that ARMC12 regulates spatiotemporal mitochondrial dynamics to form the mitochondrial sheath through cooperative interactions with several proteins on the sperm mitochondrial surface.


ACS Nano ◽  
2020 ◽  
Author(s):  
David P. Hoogerheide ◽  
Tatiana K. Rostovtseva ◽  
Daniel Jacobs ◽  
Philip A. Gurnev ◽  
Sergey M. Bezrukov

2020 ◽  
Vol 21 (22) ◽  
pp. 8880
Author(s):  
Cecilia Arriagada ◽  
Viviana A. Cavieres ◽  
Charlotte Luchsinger ◽  
Alexis E. González ◽  
Vanessa C. Muñoz ◽  
...  

Protein trafficking is altered when normal cells acquire a tumor phenotype. A key subcellular compartment in regulating protein trafficking is the Golgi apparatus, but its role in carcinogenesis is still not well defined. Golgi phosphoprotein 3 (GOLPH3), a peripheral membrane protein mostly localized at the trans-Golgi network, is overexpressed in several tumor types including glioblastoma multiforme (GBM), the most lethal primary brain tumor. Moreover, GOLPH3 is currently considered an oncoprotein, however its precise function in GBM is not fully understood. Here, we analyzed in T98G cells of GBM, which express high levels of epidermal growth factor receptor (EGFR), the effect of stable RNAi-mediated knockdown of GOLPH3. We found that silencing GOLPH3 caused a significant reduction in the proliferation of T98G cells and an unexpected increase in total EGFR levels, even at the cell surface, which was however less prone to ligand-induced autophosphorylation. Furthermore, silencing GOLPH3 decreased EGFR sialylation and fucosylation, which correlated with delayed ligand-induced EGFR downregulation and its accumulation at endo-lysosomal compartments. Finally, we found that EGF failed at promoting EGFR ubiquitylation when the levels of GOLPH3 were reduced. Altogether, our results show that GOLPH3 in T98G cells regulates the endocytic trafficking and activation of EGFR likely by affecting its extent of glycosylation and ubiquitylation.


2020 ◽  
Vol 27 (19) ◽  
pp. 3123-3150 ◽  
Author(s):  
Renata Kozyraki ◽  
Olivier Cases

Gp280/Intrinsic factor-vitamin B12 receptor/Cubilin (CUBN) is a large endocytic receptor serving multiple functions in vitamin B12 homeostasis, renal reabsorption of protein or toxic substances including albumin, vitamin D-binding protein or cadmium. Cubilin is a peripheral membrane protein consisting of 8 Epidermal Growth Factor (EGF)-like repeats and 27 CUB (defined as Complement C1r/C1s, Uegf, BMP1) domains. This structurally unique protein interacts with at least two molecular partners, Amnionless (AMN) and Lrp2/Megalin. AMN is involved in appropriate plasma membrane transport of Cubilin whereas Lrp2 is essential for efficient internalization of Cubilin and its ligands. Observations gleaned from animal models with Cubn deficiency or human diseases demonstrate the importance of this protein. In this review addressed to basic research and medical scientists, we summarize currently available data on Cubilin and its implication in renal and intestinal biology. We also discuss the role of Cubilin as a modulator of Fgf8 signaling during embryonic development and propose that the Cubilin-Fgf8 interaction may be relevant in human pathology, including in cancer progression, heart or neural tube defects. We finally provide experimental elements suggesting that some aspects of Cubilin physiology might be relevant in drug design.


Sign in / Sign up

Export Citation Format

Share Document