human keratocytes
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 5)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joo-Hee Park ◽  
Martha Kim ◽  
Bora Yim ◽  
Choul Yong Park

AbstractNitric oxide (NO) has the potential to modulate myofibroblast differentiation. In this study, we investigated the effect of exogenous NO on the myofibroblast differentiation of human keratocytes using sodium nitrite as a NO donor. Myofibroblasts were induced by exposing resting keratocytes to transforming growth factor (TGF)-β1. N-cadherin and α-smooth muscle actin (αSMA) were used as myofibroblast markers. Both resting keratocytes and -stimulated keratocytes were exposed to various concentrations of sodium nitrite (1 μM to 1000 mM) for 24 to 72 h. Exposure to sodium nitrite did not alter keratocytes’ viability up to a 10 mM concentration for 72 h. However, significant cytotoxicity was observed in higher concentrations of sodium nitrite (over 100 mM). The expression of αSMA and N-cadherin was significantly increased in keratocytes by TGF-β1 stimulation after 72 h incubation. The addition of sodium nitrite (1 mM) to TGF-β1-stimulated keratocytes significantly decreased αSMA and N cadherin expression. Smad3 phosphorylation decreased after sodium nitrite (1 mM) exposure in TGF-β1-stimulated keratocytes. The effect of NO was reversed when NO scavenger, 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) was added in the culture medium. Application of sodium nitrite resulted in significant decrease of corneal opacity when measured at 2 weeks after the chemical burn in the mouse. These results verified the potential therapeutic effect of NO to decrease myofibroblast differentiation of human keratocytes and corneal opacity after injury.


2021 ◽  
Author(s):  
Marta Słoniecka ◽  
André Vicente ◽  
Berit Byström ◽  
Fátima Pedrosa Domellöf

ABSTRACTPURPOSETo establish an in vitro model of aniridia-related keratopathy (ARK) using CRISPR/Cas9 engineered human keratocytes with mutations in the PAX6 gene, and to study the Notch Homolog 1, Translocation-Associated (Notch1), sonic hedgehog (SHH), mammalian target of rapamycin (mTOR), and Wnt/β-catenin signaling pathways in the PAX6 mutant keratocytes.METHODSPrimary human keratocytes were isolated from healthy corneas. Keratocytes were transduced with Cas9 lentiviral particles in order to create cells stably expressing Cas9 nuclease. Lentiviral particles carrying PAX6 sgRNA were transduced into the Cas9 keratocytes creating mutants. Analysis of signaling pathways was assessed by RT-qPCR for gene expression and western blot for protein expression.RESULTSHuman keratocytes stably expressing Cas9 nuclease were created. Keratocytes carrying PAX6 gene mutation were successfully generated. PAX6 mutant keratocytes showed modified expression patterns of extracellular matrix components such as collagens and fibrotic markers. Analysis of the Notch1, SHH, mTOR, and Wnt/β-catenin signaling pathways in the PAX6 mutant keratocytes revealed altered gene and protein expression of the key players involved in these pathways.CONCLUSIONSA properly functioning PAX6 gene in keratocytes is crucial for the regulation of signaling pathways important for cell fate determination, proliferation, and inflammation. Pax6 mutation in the in vitro settings leads to changes in these pathways which resemble those found in corneas of patients with ARK.


2020 ◽  
pp. 112067212091303 ◽  
Author(s):  
Eduardo Anitua ◽  
María de la Fuente ◽  
Francisco Muruzábal ◽  
Jesús Merayo-Lloves

Purpose: The purpose of this study was to analyze the biological content and activity of freeze-dried plasma rich in growth factors eye drops after their storage at 4°C and at room temperature for 3 months with respect to fresh samples (time 0). Methods: Plasma rich in growth factors was obtained after blood centrifugation from three healthy donors. After platelet activation, the obtained plasma rich in growth factors eye drops were lyophilized alone or in combination with lyoprotectant (trehalose), then they were stored for 3 months at room temperature or at 4°C. Several growth factors were analyzed at each storage time and condition. Furthermore, the proliferative and migratory potential of freeze-dried plasma rich in growth factors eye drops kept for 3 months at different temperature conditions was evaluated on primary human keratocytes. Results: The different growth factors analyzed maintained their levels at each time and storage condition. Freeze-dried plasma rich in growth factors eye drops stored at room temperature or 4°C for 3 months showed no significant differences on the proliferative activity of keratocytes in comparison with fresh samples. However, the number of migratory human keratocytes increased significantly after treatment with lyophilized plasma rich in growth factors eye drops kept for 3 months compared to those obtained at time 0. No significant differences were observed between the freeze-dried plasma rich in growth factors eye drops whether mixed or not with lyoprotectant. Conclusion: Freeze-dried plasma rich in growth factors eye drops preserve the main growth factors and their biological activity after storage at room temperature or 4°C for up to 3 months. Lyophilized plasma rich in growth factors eye drops conserve their biological features even without the use of lyoprotectants for at least 3 months.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Beau J. Fenner ◽  
Nur Zahirah B. M. Yusoff ◽  
Matthias Fuest ◽  
Lei Zhou ◽  
Francisco Bandeira ◽  
...  

Abstract Background Human corneal stromal keratocytes propagated in culture media supplemented with human amnion extract (AME) can correct early corneal haze in an animal model. Clinical application of cultivated keratocytes is limited by infectious disease screening before amnion products can be used in humans. It remains unclear if AME from cryopreserved versus fresh human amnion can support human keratocyte propagation, and which components of the extract promote keratocyte growth. Methods Three placentas were collected for the preparation of fresh and cryopreserved amnion tissues followed by homogenization and protein extraction. AME protein profiles were studied using isobaric tagging for relative and absolute quantitation (iTRAQ) proteomics. Enriched gene ontology (GO) terms and functional classes were identified. Primary human keratocytes from 4 donor corneas were cultured in media supplemented with fresh AME (F-AME) or cryopreserved AME (C-AME). Cell viability, proliferation and keratocyte marker expression were examined by confocal immunofluorescence and flow cytometry. Results AME proteomics revealed 1385 proteins with similar expression levels (between 0.5- and 2-fold) between F- and C-AME, while 286 proteins were reduced (less than 0.5-fold) in C-AME. Enriched GO term and biological pathway analysis showed that those proteins with comparable expression between F-AME and C-AME were involved in cell metabolism, epithelial-mesenchymal transition, focal adhesion, cell-extracellular matrix interaction, cell stress regulation and complement cascades. Human corneal stromal keratocytes cultured with F-AME or C-AME showed similar morphology and viability, while cell proliferation was mildly suppressed with C-AME (P > 0.05). Expression of aldehyde dehydrogenase 3A1 (ALDH3A1) and CD34 was similar in both cultures. Conclusion AME from cryopreserved amnion had limited influence on keratocyte culture. It is feasible to use protein extract from cryopreserved amnion to propagate human keratocytes for potential translational applications.


2019 ◽  
Vol 107 (9) ◽  
pp. 1945-1953 ◽  
Author(s):  
Daniela F. Duarte Campos ◽  
Malena Rohde ◽  
Mitchell Ross ◽  
Parham Anvari ◽  
Andreas Blaeser ◽  
...  
Keyword(s):  

PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205073
Author(s):  
Eduardo Anitua ◽  
María de la Fuente ◽  
Francisco Muruzabal ◽  
Ronald Mauricio Sánchez-Ávila ◽  
Jesús Merayo-Lloves ◽  
...  

2017 ◽  
Vol 58 (1) ◽  
pp. 362 ◽  
Author(s):  
Bora Yim ◽  
Joo-Hee Park ◽  
Hyejoong Jeong ◽  
Jinkee Hong ◽  
Young-Joo Shin ◽  
...  

2016 ◽  
Vol 57 (14) ◽  
pp. 5892 ◽  
Author(s):  
Marta Sloniecka ◽  
Ludvig J. Backman ◽  
Patrik Danielson

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Tomislav Sarenac ◽  
Martin Trapecar ◽  
Lidija Gradisnik ◽  
Marjan Slak Rupnik ◽  
Dusica Pahor

Sign in / Sign up

Export Citation Format

Share Document