energy shaping
Recently Published Documents





Penghan Li ◽  
Linyun Xiong ◽  
Meiling Ma ◽  
Sunhua Huang ◽  
Zean Zhu ◽  

Hüseyin Alpaslan Yıldız ◽  
Leyla Gören-Sümer

The energy shaping method, Controlled Lagrangian, is a well-known approach to stabilize the underactuated Euler Lagrange (EL) systems. In this approach, to construct a control rule, some nonlinear and nonhomogeneous partial differential equations (PDEs), which are called matching conditions, must be solved. In this paper, a method is proposed to obtain an approximate solution of these matching conditions for a class of underactuated EL systems. To develop this method, the potential energy matching condition is transformed to a set of linear PDEs using an approximation of inertia matrices. Hence, the assignable potential energy function and the controlled inertia matrix both are constructed as a common solution of these PDEs. Subsequently, the gyroscopic and dissipative forces are determined as the solution for kinetic energy matching condition. Conclusively, the control rule is constructed by adding energy shaping rule and additional dissipation injection to provide asymptotic stability. The stability analysis of the closed-loop system which used the control rule derived with the proposed method is also provided. To demonstrate the success of the proposed method, the stability problem of the inverted pendulum on a cart is considered.

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6906
Juan Cristobal Alcaraz Alcaraz Tapia ◽  
Carlos E. Castañeda ◽  
Héctor Vargas-Rodríguez

In this article, we propose a mathematical model using the port-Hamiltonian formalism for a satellite’s three-axis attitude system comprising fluid rings. Fluid rings are an alternative to reaction wheels used for the same purpose, since, for the same mass, they can exert a greater torque than a reaction wheel as the fluid can circulate the periphery of the satellite. The port-Hamiltonian representation lays the foundation for a posterior controller that is feasible, stable, and robust based on the interconnection of the system to energy shaping and/or damping injection components, and by adding energy routing controllers. The torques exerted by the fluid rings are modeled using linear regression analysis on the experimental data got from a prototype of a fluid ring. Since the dynamics of turbulent flows is complex, the torques obtained by the prototype lead to a simpler first approach, leaving its uncertainties to a controller. Thus, the attitude system model could be tested in a future prototype before considering a spatial environment.

Mark Yeatman ◽  
Robert D. Gregg

Abstract This paper explores new ways to use energy shaping and regulation methods in walking systems to generate new passive-like gaits and dynamically transition between them. We recapitulate a control framework for Lagrangian hybrid systems, and show that regulating a state varying energy function is equivalent to applying energy shaping and regulating the system to a constant energy value. We then consider a simple 1-dimensional hopping robot and show how energy shaping and regulation control can be used to generate and transition between nearly globally stable hopping limit cycles. The principles from this example are then applied on two canonical walking models, the spring loaded inverted pendulum (SLIP) and compass gait biped, to generate and transition between locomotive gaits. These examples show that piecewise jumps in control parameters can be used to achieve stable changes in desired gait characteristics dynamically/online.

Sign in / Sign up

Export Citation Format

Share Document