gi cancers
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 161)

H-INDEX

16
(FIVE YEARS 4)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 190
Author(s):  
Catarina Melim ◽  
Maria R. Lauro ◽  
Isabel M. Pires ◽  
Paulo J. Oliveira ◽  
Célia Cabral

The gastrointestinal (GI) tract is composed of rapidly renewing cells, which increase the likelihood of cancer. Colorectal cancer is one of the most frequently diagnosed GI cancers and currently stands in second place regarding cancer-related mortality. Unfortunately, the treatment of GI is limited, and few developments have occurred in the field over the years. With this in mind, new therapeutic strategies involving biologically active phytocompounds are being evaluated as anti-cancer agents. Vegetables such as broccoli, brussels sprouts, cabbage, cauliflower, and radish, all belonging to the Brassicaceae family, are high in dietary fibre, minerals, vitamins, carotenoids, polyphenols, and glucosinolates. The latter compound is a secondary metabolite characteristic of this family and, when biologically active, has demonstrated anti-cancer properties. This article reviews the literature regarding the potential of Cruciferous vegetables in the prevention and/or treatment of GI cancers and the relevance of appropriate compound formulations for improving the stability and bioaccessibility of the major Cruciferous compounds, with a particular focus on glucosinolates.


2022 ◽  
Vol 21 ◽  
pp. 153473542110674
Author(s):  
Sierra J. McDonald ◽  
Brandon N. VanderVeen ◽  
Kandy T. Velazquez ◽  
Reilly T. Enos ◽  
Ciaran M. Fairman ◽  
...  

Gastrointestinal (GI) cancers cause one-third of all cancer-related deaths worldwide. Natural compounds are emerging as alternative or adjuvant cancer therapies given their distinct advantage of manipulating multiple pathways to both suppress tumor growth and alleviate cancer comorbidities; however, concerns regarding efficacy, bioavailability, and safety are barriers to their development for clinical use. Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a Chinese herb-derived anthraquinone, has been shown to exert anti-tumor effects in colon, liver, and pancreatic cancers. While the mechanisms underlying emodin’s tumoricidal effects continue to be unearthed, recent evidence highlights a role for mitochondrial mediated apoptosis, modulated stress and inflammatory signaling pathways, and blunted angiogenesis. The goals of this review are to (1) highlight emodin’s anti-cancer properties within GI cancers, (2) discuss the known anti-cancer mechanisms of action of emodin, (3) address emodin’s potential as a treatment complementary to standard chemotherapeutics, (4) assess the efficacy and bioavailability of emodin derivatives as they relate to cancer, and (5) evaluate the safety of emodin.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 202
Author(s):  
Ismael Riquelme ◽  
Pablo Pérez-Moreno ◽  
Pablo Letelier ◽  
Priscilla Brebi ◽  
Juan Carlos Roa

Gastrointestinal (GI) cancers produce ~3.4 million related deaths worldwide, comprising 35% of all cancer-related deaths. The high mortality among GI cancers is due to late diagnosis, the presence of metastasis and drug resistance development. Additionally, current clinical markers do not adequately guide patient management, thereby new and more reliable biomarkers and therapeutic targets are still needed for these diseases. RNA-seq technology has allowed the discovery of new types of RNA transcripts including PIWI-interacting RNAs (piRNAs), which have particular characteristics that enable these molecules to act via diverse molecular mechanisms for regulating gene expression. Cumulative evidence has described the potential role of piRNAs in the development of several tumor types as a likely explanation for certain genomic abnormalities and signaling pathways’ deregulations observed in cancer. In addition, these piRNAs might be also proposed as promising diagnostic or prognostic biomarkers or as potential therapeutic targets in malignancies. This review describes important topics about piRNAs including their molecular characteristics, biosynthesis processes, gene expression silencing mechanisms, and the manner in which these transcripts have been studied in samples and cell lines of GI cancers to elucidate their implications in these diseases. Moreover, this article discusses the potential clinical usefulness of piRNAs as biomarkers and therapeutic targets in GI cancers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amirhossein Davoodvandi ◽  
Farzaneh Fallahi ◽  
Omid Reza Tamtaji ◽  
Vida Tajiknia ◽  
Zarrin Banikazemi ◽  
...  

Because of their increasing prevalence, gastrointestinal (GI) cancers are regarded as an important global health challenge. Microorganisms residing in the human GI tract, termed gut microbiota, encompass a large number of living organisms. The role of the gut in the regulation of the gut-mediated immune responses, metabolism, absorption of micro- and macro-nutrients and essential vitamins, and short-chain fatty acid production, and resistance to pathogens has been extensively investigated. In the past few decades, it has been shown that microbiota imbalance is associated with the susceptibility to various chronic disorders, such as obesity, irritable bowel syndrome, inflammatory bowel disease, asthma, rheumatoid arthritis, psychiatric disorders, and various types of cancer. Emerging evidence has shown that oral administration of various strains of probiotics can protect against cancer development. Furthermore, clinical investigations suggest that probiotic administration in cancer patients decreases the incidence of postoperative inflammation. The present review addresses the efficacy and underlying mechanisms of action of probiotics against GI cancers. The safety of the most commercial probiotic strains has been confirmed, and therefore these strains can be used as adjuvant or neo-adjuvant treatments for cancer prevention and improving the efficacy of therapeutic strategies. Nevertheless, well-designed clinical studies are still needed for a better understanding of the properties and mechanisms of action of probiotic strains in mitigating GI cancer development.


2021 ◽  
Vol 12 (8) ◽  
pp. S51
Author(s):  
H. Bruckner ◽  
A. Hirschfeld ◽  
R. DeJager ◽  
F. Bassali ◽  
D. Gurell ◽  
...  
Keyword(s):  

Author(s):  
André Jefremow ◽  
Markus F. Neurath ◽  
Maximilian J. Waldner

Gastrointestinal (GI) cancers such as colorectal cancer (CRC), gastric cancer (GC), esophageal cancer (EG), pancreatic duct adenocarcinoma (PDAC) or hepatocellular cancer (HCC) belong to the most commonly diagnosed types of cancer and are among the most frequent causes of cancer related death worldwide. Most types of GI cancer develop in a stepwise fashion with the occurrence of various driver mutations during tumor progression. Understanding the precise function of mutations driving GI cancer development has been regarded as a prerequisite for an improved clinical management of GI malignancies. During recent years, CRISPR/Cas9 has developed into a powerful tool for genome editing in cancer research by knocking in and knocking out even multiple genes at the same time. Within this review, we discuss recent applications for CRISPR/Cas9-based genome editing in GI cancer research including CRC, GC, EG, PDAC and HCC. These applications include functional studies of candidate genes in cancer cell lines or organoids in vitro as well as in murine cancer models in vivo, library screening for the identification of previously unknown driver mutations and even gene therapy of GI cancers.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ji Hyung Nam ◽  
Sung-In Jang ◽  
Hyun Soo Park ◽  
Jae Hak Kim ◽  
Jun Kyu Lee ◽  
...  

Abstract Background The effect of menopausal hormone therapy (MHT) on gastrointestinal (GI) cancers is controversial, and no research has been conducted in the East. This study investigates the association between MHT and GI cancer risks in South Korea. Methods A prescription-based cohort study was conducted using the NHIS Sample Cohort (2002–2013) of Korea. We used 1:5 propensity score matching, and 22,577 MHT users and 111,113 non-users were selected. Kaplan–Meier survival curves with log-rank tests were used. Cox proportional hazard models were used to estimate hazard ratios (HR) with 95% confidence intervals (CI). Landmark analysis was used to determine dose–response relationship. Results The median follow-up was 79.6 of months. Kaplan–Meier survival curve showed less frequent GI cancer diagnoses in MHT users compared to non-users (0.13 vs. 0.16 per 100,000 person-years). Menopausal hormone therapy was associated with decreased incidence of GI cancer (HR = 0.809, 95%CI = 0.691–0.946) and colorectal cancer (CRC) (HR = 0.757, 95%CI = 0.577–0.995). Gastric cancer (GC) incidence showed marginal significance (HR = 0.787, 95%CI = 0.605–1.023). The mortality from GI cancer was lower in MHT users than in non-users (HR = 0.737, 95%CI = 0.547–0.993). The relationship between MHT and GI cancer was stronger with increasing MHT dose in terms of both incidence (Ptrend = 0.0002) and mortality (Ptrend = 0.0064). Conclusions The association between MHT use and reduced risks of GI cancers was attributed to CRC and GC and showed a dose–response relationship in a population-based cohort study.


Sign in / Sign up

Export Citation Format

Share Document