cchc zinc finger
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Aolong Sun ◽  
Yongliang Li ◽  
Xiaoxiao Zou ◽  
Fenglin Chen ◽  
Ruqiong Cai ◽  
...  

Abstract Background: The CCHC zinc finger proteins (CCHC-ZFPs) are transcription factors that play versatile roles in plant growth, development, and responses to biotic/abiotic stress. However, little is known about the CCHC-ZF genes in bread wheat (Triticum aestivum), an important food crop.Results: In this study, 50 TaCCHC-ZF genes were identified and distributed unevenly on 21 wheat chromosomes. According to the phylogenetic features, the 50 TaCCHC-ZF genes were classified into eight groups with specific motifs and gene structures. 43 TaCCHC-ZF genes were identified as segmentally duplicated genes that formed 36 segmental duplication gene pairs. Additionally, the collinearity analyses between wheat and eight other representative plant species showed that wheat had closer phylogenetic relationships with monocots compared to dicots. A total of 636 cis-elements related to environmental stress and phytohormone responsiveness were identified in the promoter of TaCCHC-ZF genes. Moreover, GO enrichment results revealed that all 50 TaCCHC-ZF genes were annotated under metal ion binding and nucleic acid binding. 91 miRNA binding sites within the 34 TaCCHC-ZF genes were identified by miRNA targets analyses, indicating that the expression of TaCCHC-ZF genes could be regulated by the miRNAs. Based on published transcriptome data, 38 TaCCHC-ZF genes were identified as DEGs, and 15 TaCCHC-ZF genes among them were verified by qRT-PCR assays, which showed response to drought, heat, or simultaneous response of them.Conclusions: This study systematically explored the gene structures, evolutionary characteristics, and potential roles during environmental responses of TaCCHC-ZF genes, providing a foundation for further investigation and application of TaCCHC-ZF genes in the molecular breeding of T. aestivum.


2021 ◽  
Author(s):  
Aolong Sun ◽  
Yongliang Li ◽  
Xiaoxiao Zou ◽  
Fenglin Chen ◽  
Ruqiong Cai ◽  
...  

Abstract Background: The CCHC zinc finger proteins (CCHC-ZFPs) are transcription factors that play versatile roles in plant growth, development, and responses to biotic/abiotic stress. However, little is known about the CCHC-ZF genes in bread wheat (Triticum aestivum), an important food crop. Results: In this study, 50 TaCCHC-ZF genes were identified and distributed unevenly on 21 wheat chromosomes. According to the phylogenetic features, the 50 TaCCHC-ZF genes were classified into eight groups with specific motifs and gene structures. 43 TaCCHC-ZF genes were identified as segmentally duplicated genes that formed 36 segmental duplication gene pairs. Additionally, the collinearity analyses between wheat and eight other representative plant species showed that wheat had closer phylogenetic relationships with monocots compared to dicots. A total of 636 cis-elements related to environmental stress and phytohormone responsiveness were identified in the promoter of TaCCHC-ZF genes. Moreover, GO enrichment results revealed that all 50 TaCCHC-ZF genes were annotated under metal ion binding and nucleic acid binding. 91 miRNA binding sites within the 34 TaCCHC-ZF genes were identified by miRNA targets analyses, indicating that the expression of TaCCHC-ZF genes could be regulated by the miRNAs. Based on published transcriptome data, 38 TaCCHC-ZF genes were identified as DEGs, and 15 TaCCHC-ZF genes among them were verified by qRT-PCR assays, which showed response to drought, heat, or simultaneous response of them. Conclusions: This study systematically explored the gene structures, evolutionary characteristics, and potential roles during environmental responses of TaCCHC-ZF genes, providing a foundation for further investigation and application of TaCCHC-ZF genes in the molecular breeding of T. aestivum. Keywords: Wheat, CCHC-ZFP genes, Structural analysis, Evolution, Abiotic stress, Expression patterns


2017 ◽  
Vol 38 (5) ◽  
Author(s):  
Piotr Grabarczyk ◽  
Passorn Winkler ◽  
Martin Delin ◽  
Praveen K. Sappa ◽  
Sander Bekeschus ◽  
...  

ABSTRACT The BCL11B gene encodes a Krüppel-like, sequence-specific zinc finger (ZF) transcription factor that acts as either a repressor or an activator, depending on its posttranslational modifications. The importance of BCL11B in numerous biological processes in multiple organs has been well established in mouse knockout models. The phenotype of the first de novo monoallelic germ line missense mutation in the BCL11B gene (encoding N441K) strongly implies that the mutant protein acts in a dominant-negative manner by neutralizing the unaffected protein through the formation of a nonfunctional dimer. Using a Förster resonance energy transfer-assisted fluorescence-activated cell sorting (FACS-FRET) assay and affinity purification followed by mass spectrometry (AP-MS), we show that the N-terminal CCHC zinc finger motif is necessary and sufficient for the formation of the BCL11B dimer. Mutation of the CCHC ZF in BCL11B abolishes its transcription-regulatory activity. In addition, unlike wild-type BCL11B, this mutant is incapable of inducing cell cycle arrest and protecting against DNA damage-driven apoptosis. Our results confirm the BCL11B dimerization hypothesis and prove its importance for BCL11B function. By mapping the relevant regions to the CCHC domain, we describe a previously unidentified mechanism of transcription factor homodimerization.


2013 ◽  
Vol 19 (4) ◽  
pp. 227-232 ◽  
Author(s):  
Maria Antonietta Castiglione Morelli ◽  
Angela Ostuni ◽  
Pier Luigi Cristinziano ◽  
Diego Tesauro ◽  
Alfonso Bavoso

Sign in / Sign up

Export Citation Format

Share Document