boundary surfaces
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 28)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
Akambay Beisembayev ◽  
Anargul Yerbossynova ◽  
Petro Pavlenko ◽  
Mukhit Baibatshayev

This paper reports a method, built in the form of a logic function, for describing the working spaces of manipulation robots analytically. A working space is defined as a work area or reachable area by a manipulation robot. An example of describing the working space of a manipulation robot with seven rotational degrees of mobility has been considered. Technological processes in robotic industries can be associated with the positioning of the grip, at the required points, in the predefined coordinates, or with the execution of the movement of a working body along the predefined trajectories, which can also be determined using the required points in the predefined coordinates. A necessary condition for a manipulation robot to execute a specified process is that all the required positioning points should be within a working space. To solve this task, a method is proposed that involves the analysis of the kinematic scheme of a manipulation robot in order to acquire a graphic image of the working space to identify boundary surfaces, as well as identify additional surfaces. The working space is limited by a set of boundary surfaces where additional surfaces are needed to highlight parts of the working space. Specifying each surface as a logic function, the working space is described piece by piece. Next, the resulting parts are combined with a logical expression, which is a disjunctive normal form of logic functions, which is an analytical description of the working space. The correspondence of the obtained analytical description to the original graphic image of working space is verified by simulating the disjunctive normal form of logic functions using MATLAB (USA).


2021 ◽  
Vol 55 (5) ◽  
Author(s):  
Jelena Jakić ◽  
Miroslav Labor ◽  
Vanja Martinac ◽  
Martina Perić

In order to improve the properties of sintered MgO (80 % precipitation) obtained from seawater, an investigation was carried out with (0, 1, 2) w/% of nano-TiO2 and micro-TiO2 additions during sintering at a temperature of 1500 °C (1 h and 2 h). The effects of the TiO2 addition on its microstructural properties, density, porosity and chemical composition after sintering were observed. The SEM/EDS analysis confirmed the formation of a homogeneous microstructure composed mainly of periclase grains and well-distributed secondary phases. CaTiO3 and MgTiO4 are predominantly located at the inter- and intra-periclase grain boundary surfaces during cooling. The microstructure of the MgO samples with the addition of nano-TiO2 become more compact, having a positive impact on the porosity and density of the samples. The addition of 1 w/% of nTiO2 represents the optimal amount for the improvement of the properties of the MgO samples (80 % precipitation) obtained from seawater.


2021 ◽  
Vol 43 (4) ◽  
pp. 37-50
Author(s):  
V.I. Havrysh ◽  

A mathematical model of heat exchange analysis between an isotropic two-layer plate heated by a point heat source concentrated on the conjugation surfaces of layers and the environment has been developed. To do this, using the theory of generalized functions, the coefficient of thermal conductivity of the materials of the plate layers is shown as a whole for the whole system. Given this, instead of two equations of thermal conductivity for each of the plate layers and the conditions of ideal thermal contact, one equation of thermal conductivity in generalized derivatives with singular coefficients is obtained between them. To solve the boundary value problem of thermal conductivity containing this equation and boundary conditions on the boundary surfaces of the plate, the integral Fourier transform was used and as a result an analytical solution of the problem in images was obtained. An inverse integral Fourier transform was applied to this solution, which made it possible to obtain the final analytical solution of the original problem. The obtained analytical solution is presented in the form of an improper convergent integral. According to Simpson's method, numerical values of this integral are obtained with a certain accuracy for given values of layer thickness, spatial coordinates, specific power of a point heat source, thermal conductivity of structural materials of the plate and heat transfer coefficient from the boundary surfaces of the plate. The material of the first layer of the plate is copper, and the second is aluminum. Computational programs have been developed to determine the numerical values of temperature in the given structure, as well as to analyze the heat exchange between the plate and the environment due to different temperature regimes due to heating the plate by a point heat source concentrated on the conjugation surfaces. Using these programs, graphs are shown that show the behavior of curves constructed using numerical values of the temperature distribution depending on the spatial coordinates. The obtained numerical values of temperature indicate the correspondence of the developed mathematical model of heat exchange analysis between a two-layer plate with a point heat source focused on the conjugation surfaces of the layersand the environment, the real physical process.


Author(s):  
István Ecsedi ◽  
Attila Baksa

AbstractThis paper deals with the Saint-Venant torsion of elastic, cylindrically orthotropic bar whose cross section is a sector of a circular ring shaped bar. The cylindrically orthotropic homogeneous elastic wedge-shaped bar strengthened by on its curved boundary surfaces by thin isotropic elastic shells. An analytical method is presented to obtain the Prandtl’s stress function, torsion function, torsional rigidity and shearing stresses. A numerical example illustrates the application of the developed analytical method.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 500
Author(s):  
Susmit Bagchi

The algebraic as well as geometric topological constructions of manifold embeddings and homotopy offer interesting insights about spaces and symmetry. This paper proposes the construction of 2-quasinormed variants of locally dense p-normed 2-spheres within a non-uniformly scalable quasinormed topological (C, R) space. The fibered space is dense and the 2-spheres are equivalent to the category of 3-dimensional manifolds or three-manifolds with simply connected boundary surfaces. However, the disjoint and proper embeddings of covering three-manifolds within the convex subspaces generates separations of p-normed 2-spheres. The 2-quasinormed variants of p-normed 2-spheres are compact and path-connected varieties within the dense space. The path-connection is further extended by introducing the concept of bi-connectedness, preserving Urysohn separation of closed subspaces. The local fundamental groups are constructed from the discrete variety of path-homotopies, which are interior to the respective 2-spheres. The simple connected boundaries of p-normed 2-spheres generate finite and countable sets of homotopy contacts of the fundamental groups. Interestingly, a compact fibre can prepare a homotopy loop in the fundamental group within the fibered topological (C, R) space. It is shown that the holomorphic condition is a requirement in the topological (C, R) space to preserve a convex path-component. However, the topological projections of p-normed 2-spheres on the disjoint holomorphic complex subspaces retain the path-connection property irrespective of the projective points on real subspace. The local fundamental groups of discrete-loop variety support the formation of a homotopically Hausdorff (C, R) space.


2021 ◽  
Vol 3 (1) ◽  
pp. 15-21
Author(s):  
Havrysh Havrysh ◽  
◽  
W. Yu. W. Yu. ◽  

A mathematical model of heat exchange analysis between an isotropic two-layer plate heated ba point heat source concentrated on the conjugation surfaces of layers and the environment has been developed. To do this, using the theory of generalized functions, the coefficient of thermal conductivity of the materials of the plate layers is shown as a whole for the wholesystem.Given this, instead of two equations of thermal conductivity for each of the plate layers and the conditions of ideal thermal contact, one equation of thermal conductivity ingeneralized derivatives with singular coefficients is obtained between them. To solve the boundary value problem of thermal conductivity containing this equation and boundary conditions on the boundary surfaces of the plate, the integral Fourier transform was used and as a result an analytical solution of the problem in images was obtained. An inverse integral Fourier transform was applied to this solution, which made it possible to obtain the final analytical solution of the original problem. The obtained analytical solution is presented in the form of an improper convergent integral. According to Simpsons method, numerical values of this integral are obtained with a certain accuracy for given values of layer thickness, spatial coordinates, specific power of a point heat source, thermal conductivity of structural materials of the plate and heat transfer coefficient from the boundary surfaces of the plate. The material of the first layer of the plate is copper, and the second is aluminum. Computational programs have been developed to determine the numerical values of temperature in the given structure, as well as to analyze the heat exchange between the plate and the environment due to different temperature regimes due to heating the plate by a point heat source concentrated on the conjugation surfaces. Using these programs, graphs are shown that show the behavior of curves constructed using numerical values of the temperature distribution depending on the spatial coordinates. The obtained numerical values of temperature indicate the correspondence of the developed mathematical model of heat exchange analysis between a two-layer plate with a point heatsource focused on the conjugation surfaces of the layersand the environment, the real physical process.


Author(s):  
L. Herrera ◽  
A. Di Prisco ◽  
J. Ospino

Abstract We investigate the evolution of self-gravitating either dissipative or non-dissipative systems satisfying the condition of minimal complexity, and whose areal radius velocity is proportional to the areal radius (quasi-homologous condition). Several exact analytical models are found under the above mentioned conditions. Some of the presented models describe the evolution of spherically symmetric dissipative fluid distributions whose center is surrounded by a cavity. Some of them satisfy the Darmois conditions whereas others present shells and must satisfy the Israel condition on either one or both boundary surfaces. Prospective applications of some of these models to astrophysical scenarios are discussed.


2020 ◽  
Vol 5 (2) ◽  
pp. 126-134
Author(s):  
Ching-Shoei Chiang ◽  
Hung-Chieh Li

Computer aided geometric design employs mathematical and computational methods for describing geometric objects, such as curves, areas in two dimensions (2D) and surfaces, and solids in 3D. An area can be represented using its boundary curves, and a solid can be represented using its boundary surfaces with intersection curves among these boundary surfaces. In addition, other methods, such as the medial-axis transform, can also be used to represent an area. Although most researchers have presented algorithms that find the medial-axis transform from an area, a algorithm using the contrasting approach is proposed; i.e., it finds an area using a medial-axis transform. The medial-axis transform is constructed using discrete points on a curve and referred to as the skeleton of the area. Subsequently, using the aforementioned discrete points, medial-axis circles are generated and referred to as the muscles of the area. Finally, these medial-axis circles are blended and referred to as the blended boundary curves skin of the area; consequently, the boundary of the area generated is smooth.


Sign in / Sign up

Export Citation Format

Share Document