fiber interaction
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 118 (31) ◽  
pp. e2020402118
Author(s):  
Jean-Baptiste Thomazo ◽  
Benjamin Le Révérend ◽  
Lea-Laetitia Pontani ◽  
Alexis M. Prevost ◽  
Elie Wandersman

To mimic the mechanical response of passive biological cilia in complex fluids, we study the bending dynamics of an anchored elastic fiber submitted to a dilute granular suspension under shear. We show that the bending fluctuations of the fiber accurately encode minute variations of the granular suspension concentration. Indeed, besides the stationary bending induced by the continuous phase flow, the passage of each single particle induces an additional deflection. We demonstrate that the dominant particle/fiber interaction arises from contacts of the particles with the fiber, and we propose a simple elastohydrodynamics model to predict their amplitude. Our results provide a mechanistic and statistical framework to describe particle detection by biological ciliated systems.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2596
Author(s):  
Zhaogui Wang ◽  
Douglas E. Smith

Numerical studies for polymer composites deposition additive manufacturing have provided significant insight promoting the rapid development of the technology. However, little of existing literature addresses the complex yet important polymer composite melt flow–fiber orientation coupling during deposition. This paper explores the effect of flow–fiber interaction for polymer deposition of 13 wt.% Carbon Fiber filled Acrylonitrile Butadiene Styrene (CF/ABS) composites through a finite-element-based numerical approach. The molten composite flow in the extrusion die plus a strand of the deposited bead contacting the deposition substrate is modelled using a 2D isothermal and incompressible Newtonian planar flow model, where the material deposition rate is ~110 mm/s simulating a large scale additive manufacturing process. The Folgar–Tucker model associated with the Advani–Tucker orientation tensor approach is adopted for the evaluation of the fiber orientation state, where the orthotropic fitted closure is applied. By comparing the computed results between the uncoupled and fully coupled solutions, it is found that the flow-orientation effects are mostly seen in the nozzle convergence zone and the extrusion-deposition transition zone of the flow domain. Further, the fully coupled fiber orientation solution is highly sensitive to the choice of the fiber–fiber interaction coefficient , e.g., assigning as 0.01 and 0.001 results in a 23% partial relative difference in the predicted elastic modulus along deposition direction. In addition, Structural properties of deposited CF/ABS beads based on our predicted fiber orientation results show favorable agreements with related experimental studies.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 978
Author(s):  
George C. Papanicolaou ◽  
Diana V. Portan ◽  
Lykourgos C. Kontaxis

The response of fiber-reinforced polymer composites to an externally applied mechanical excitation is closely related to the microscopic stress transfer mechanisms taking place in the fiber–matrix interphasial region. In particular, in the case of viscoelastic responses, these mechanisms are time dependent. Defining the interphase thickness as the maximum radial distance from the fiber surface where a specific matrix property is affected by the fiber presence, it is important to study its variation with time. In the present investigation, the stress relaxation behavior of a glass fiber-reinforced polymer (GFRP) under flexural conditions was studied. Next, applying the hybrid viscoelastic interphase model (HVIM), developed by the first author, the interphase modulus and interphase thickness were both evaluated, and their variation with time during the stress relaxation test was plotted. It was found that the interphase modulus decreases with the radial distance, being always higher than the bulk matrix modulus. In addition, the interphase thickness increases with time, showing that during stress relaxation, fiber–matrix debonding takes place. Finally, the effect of fiber interaction on the interphase modulus was found. It is observed that fiber interaction depends on both the fiber–matrix degree of adhesion as well as the fiber volume fraction and the time-dependent interphase modulus.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Senji Hamanaka ◽  
Chisato Nonomura ◽  
Thanh Binh Nguyen Thi ◽  
Atsushi Yokoyama

Abstract This study aims to clarify the relationship between the layer structure transition of fibers caused by the change in the flow field and the thermal properties and fiber interaction when the glass fiber content is changed. Polyamide 6 samples with different short glass fiber contents were prepared, and changes in layer structure during the flow process of injection molding were compared using X-ray computed tomography. An injection-molding simulation was performed to compare the changes in the layer structure of fibers during the flow process, and the temperature distribution and shear rate distribution were obtained by numerical analysis. Furthermore, the effect of fiber interaction on the layer structure transition of fibers was considered using a relaxation function composed of the fiber content, fiber shape factor, and strain rate.


Entropy ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 30
Author(s):  
Minyoung Yun ◽  
Clara Argerich Martin ◽  
Pierre Giormini ◽  
Francisco Chinesta ◽  
Suresh Advani

Fiber–fiber interaction plays an important role in the evolution of fiber orientation in semi-concentrated suspensions. Flow induced orientation in short-fiber reinforced composites determines the anisotropic properties of manufactured parts and consequently their performances. In the case of dilute suspensions, the orientation evolution can be accurately described by using the Jeffery model; however, as soon as the fiber concentration increases, fiber–fiber interactions cannot be ignored anymore and the final orientation state strongly depends on the modeling of those interactions. First modeling frameworks described these interactions from a diffusion mechanism; however, it was necessary to consider richer descriptions (anisotropic diffusion, etc.) to address experimental observations. Even if different proposals were considered, none of them seem general and accurate enough. In this paper we do not address a new proposal of a fiber interaction model, but a data-driven methodology able to enrich existing models from data, that in our case comes from a direct numerical simulation of well resolved microscopic physics.


2019 ◽  
Vol 42 (2) ◽  
pp. 127-138
Author(s):  
Antônio Italcy de Oliveira Júnior ◽  
José Fernando Thomé Jucá ◽  
Janilson Alves Ferreira ◽  
Laís Chaves Guilherme

Sign in / Sign up

Export Citation Format

Share Document