molecular tracers
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 12)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Phillip Ang ◽  
Matt Matrongolo ◽  
Max Tischfield

Congenital skull malformations are associated with vascular anomalies that can impair fluid balance in the central nervous system. We previously reported that humans with craniosynostosis and mutations in TWIST1 have dural venous sinus malformations. It is still unknown whether meningeal lymphatic networks, which are patterned alongside the venous sinuses, are also affected. Using a novel skull flat mounting technique, we show that the growth and expansion of meningeal lymphatics are perturbed in Twist1 craniosynostosis models. Changes to the local meningeal environment, including hypoplastic dura and venous malformations, affect the ability of lymphatic networks to sprout and remodel. Dorsal networks along the transverse sinus are hypoplastic with reduced branching. By contrast, basal networks closer to the skull base are more variably affected, showing exuberant growth in some animals suggesting they are compensating for vessel loss in dorsal networks. Injecting molecular tracers into cerebrospinal fluid reveals significantly less drainage to the deep cervical lymph nodes, indicative of impaired lymphatic function. Collectively, our results show that meningeal lymphatic development is hindered in craniosynostosis, suggesting central nervous system waste clearance may be impeded.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 579
Author(s):  
Fumikazu Ikemori ◽  
Rie Nishimura ◽  
Shinji Saito ◽  
Masayuki Akiyama ◽  
Shigekazu Yamamoto ◽  
...  

To understand the characteristics of secondary organic aerosols (SOAs) and estimate their impact on water-soluble organic carbon (WSOC) in urban areas in Japan, we measured 17 organic tracers using gas chromatography–mass spectrometry from particulate matter with an aerodynamic diameter smaller than 2.5 μm collected at five urban sites in Japan during spring and summer. Most anthropogenic, monoterpene-derived, and isoprene-derived SOA tracers showed meaningful correlations with potential ozone in both these seasons. These results indicate that oxidants play an important role in SOAs produced during both seasons in urban cities in Japan. WSOC was significantly affected by anthropogenic and monoterpene-derived SOAs during spring and three SOA groups during summer at most of the sites sampled. The total estimated secondary organic carbons (SOCs), including mono-aromatic, di-aromatic, monoterpene-derived, and isoprene-derived SOCs, could explain the WSOC fractions of 39–63% in spring and 46–54% in summer at each site. Notably, monoterpene-derived and mono-aromatic SOCs accounted for most of the total estimated SOCs in both spring (85–93%) and summer (75–82%) at each site. These results indicate that SOAs significantly impact WSOC concentrations during both these seasons at urban sites in Japan.


2021 ◽  
Vol 34 (3) ◽  
pp. 817-832 ◽  
Author(s):  
Faria Khan ◽  
Karina Kwapiszewska ◽  
Yue Zhang ◽  
Yuzhi Chen ◽  
Andrew T. Lambe ◽  
...  

2020 ◽  
Vol 634 ◽  
pp. A17
Author(s):  
T. A. James ◽  
S. Viti ◽  
J. Holdship ◽  
I. Jiménez-Serra

Aims. The physical structure of a shock wave may take a form unique to its shock type, implying that the chemistry of each shock type is unique as well. We aim to investigate the different chemistries of J-type and C-type shocks in order to identify unique molecular tracers of both shock types. We apply these diagnostics to the protostellar outflow L1157 to establish whether the B2 clump could host shocks exhibiting type-specific behaviour. Of particular interest is the L1157-B2 clump, which has been shown to exhibit bright emission in S-bearing species and HNCO. Methods. We simulate, using a parameterised approach, a planar, steady-state J-type shock wave using UCLCHEM. We compute a grid of models using both C-type and J-type shock models to determine the chemical abundance of shock-tracing species as a function of distance through the shock and apply it to the L1157 outflow. We focus on known shock-tracing molecules such as H2O, HCN, and CH3OH. Results. We find that a range of molecules including H2O and HCN have unique behaviour specific to a J-type shock, but that such differences in behaviour are only evident at low vs and low nH. We find that CH3OH is enhanced by shocks and is a reliable probe of the pre-shock gas density. However, we find no difference between its gas-phase abundance in C-type and J-type shocks. Finally, from our application to L1157, we find that the fractional abundances within the B2 region are consistent with both C-type and J-type shock emission.


2019 ◽  
Vol 212 ◽  
pp. 250-261
Author(s):  
Lise Bonvalot ◽  
Thibaut Tuna ◽  
Yoann Fagault ◽  
Alexandre Sylvestre ◽  
BouAlem Mesbah ◽  
...  

2019 ◽  
Vol 20 (7) ◽  
pp. e354-e367 ◽  
Author(s):  
Sophie Hernot ◽  
Labrinus van Manen ◽  
Pieterjan Debie ◽  
Jan Sven David Mieog ◽  
Alexander Lucas Vahrmeijer

Sign in / Sign up

Export Citation Format

Share Document