freshwater eutrophication
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 22)

H-INDEX

9
(FIVE YEARS 3)

2022 ◽  
Vol 14 (2) ◽  
pp. 846
Author(s):  
Georgios Archimidis Tsalidis

Industrial agriculture results in environmental burdens due to the overuse of fertilizers and pesticides. Fungicides is a class of pesticides whose application contributes (among others) to human toxicity and ecotoxicity. The European Union aims to increase organic agriculture. For this reason, this work aims to analyze climate change, freshwater ecotoxicity, terrestrial ecotoxicity, human toxicity, (terrestrial) acidification, and freshwater eutrophication impacts of fungicides and calculate expected benefits to human health (per European citizen) and ecosystem quality (terrestrial) with life cycle assessment (LCA) during crop production. The Scopus database was searched for LCA studies that considered the application of fungicides to specific crops. The analysis shows how many systemic and contact fungicides were considered by LCA studies and what was the applied dosage. Furthermore, it shows that fungicides highly contribute to freshwater ecotoxicity, terrestrial ecotoxicity, human toxicity, and freshwater eutrophication for fruits and vegetables, but to a low extent compared to all considered environmental impacts in the case of cereals and rapeseed. Expected benefits to human health and ecosystem quality after fungicides elimination are greater for fruits and vegetables, ranging between 0 to 47 min per European citizen in a year and 0 to 90 species per year, respectively.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012012
Author(s):  
H Adnan ◽  
A T Balasbaneh

Abstract Life cycle assessment (LCA) is conducted in order to evaluate the environmental impacts of products chosen from the manufacturing phase and the end-of life cycle of the material and in clay brick and concrete were chose as the observed products. Brick is one of the important construction materials that can be seen at the surrounding. Main objective for this study is to investigate the impact of production of different types of brick to the level of emissions of carbon dioxide to the environment. Four stages of life cycle assessment were conducted before the result for the study analysis can be obtained and that stages including goal and scope definition, life cycle inventory (LCI), life cycle impact assessment (LCIA) and the interpretation part. The results obtained from the simulation of the Simapro shown that the concrete contributes more negative impact compared production of clay brick in terms of global warming, ozone depletion, formation of fine particulate matter and ozone formation. Manufacture of clay brick contributes more negative impact to the ionizing radiation, freshwater eutrophication and mineral resource scarcity.


2021 ◽  
Vol 3 (11) ◽  
Author(s):  
Anna Elisabeth Gnielka ◽  
Christof Menzel

AbstractEvery consumer’s decision has an impact on the environment, and even basic food products such as pasta have an impact due to their high consumption rates. Factors that can be influenced by the consumer include the preparation (cooking), last mile and packaging phases. The last mile has not been considered in most studies but contributes considerably to the environmental impact of pasta. The three phases and their environmental impact on the life cycle of pasta are analyzed in this cradle-to-grave life cycle assessment. The focus of the study lies on the impact categories climate change, agricultural land occupation, fossil depletion, water depletion, freshwater eutrophication and freshwater ecotoxicity. Inventory data were taken from other studies, were collected in cooperation with a zero-packaging organic grocery store in Germany or were gained in test series. Our results show that the preparation of pasta has the greatest environmental impact (over 40% in the impact categories climate change and fossil depletion and over 50% in the impact category freshwater eutrophication), followed by the last mile (over 20% in the impact categories climate change and fossil depletion) and lastly the packaging (nearly 9% in the impact categories freshwater eutrophication and freshwater ecotoxicity). Based on our study´s results, we provide some recommendations for minimizing the environmental impacts of pasta.


Author(s):  
Moritz Dreyer ◽  
Stefan Hörtenhuber ◽  
Werner Zollitsch ◽  
Henry Jäger ◽  
Lisa-Marie Schaden ◽  
...  

Abstract Purpose Global food production needs to increase to provide enough food for over 9 billion people living by 2050. Traditional animal production is among the leading causes for climate change and occupation of land. Edible insects might be a sustainable protein supply to humans, but environmental life cycle assessment (LCA) studies on them are scarce. This study performs an LCA of a small-scale production system of yellow mealworms (Tenebrio molitor) in Central Europe that are supplied with organic feedstuff. Methods A combined ReCiPe midpoint (H) and CED method is used to estimate the potential environmental impacts from cradle-to-gate. Impact categories include global warming potential (GWP), non-renewable energy use (NREU), agricultural land occupation (ALOP), terrestrial acidification potential (TAP) and freshwater eutrophication potential (FEP). The robustness of the results is tested via sensitivity analyses and Monte Carlo simulations. Results and discussion Impacts related to the production of 1 kg of edible mealworm protein amount to 20.4 kg CO2-eq (GWP), 213.66 MJ-eq (NREU), 22.38 m2 (ALOP), 159.52 g SO2-eq (TAP) and 12.41 g P-eq (FEP). Upstream feed production and on-farm energy demand related to the heating of the facilities are identified as environmental hot-spots: Depending on the impact category, feed supply contributes up to 90% and on-farm heating accounts for up to 65% of overall impacts. The organic mealworm production system is contrasted with a selected Austrian organic broiler production system, to which it compares favourably (18–72% lower impacts per category), with the exception of freshwater eutrophication (6% higher impacts). Conclusions This case study shows that the Austrian mealworm production system compares favourably to traditional livestock systems. Compared to LCAs from large-scale T. molitor rearing facilities in France and in the Netherlands, however, the Austrian production system cannot compete for the reasons of production scale, feed conversion efficiency and type of production system. Nevertheless, the investigated mealworms represent a sustainable protein alternative that should be added to the Western diet.


2021 ◽  
Author(s):  
Chiara Colizzi ◽  
Marjolein C Harbers ◽  
Reina E Vellinga ◽  
WM Monique Verschuren ◽  
Jolanda MA Boer ◽  
...  

Objectives: To construct a diet-score measuring the level of adherence to the Healthy Reference Diet (HRD), to explore whether adherence to the HRD is associated with coronary heart disease (CHD), all-cause mortality risk, and to calculate its environmental impact. Design: Prospective cohort study. Setting: The Dutch contribution to the European Prospective Investigation into Cancer and Nutrition (EPIC-NL). Participants: 37,349 adults (20-70y) without CHD at baseline. Main outcome measures: Primary outcomes were incident CHD and all-cause mortality. Secondary outcomes were greenhouse gas emission (GHGE), land use, blue water use, freshwater eutrophication, marine eutrophication, and terrestrial acidification. Results: During a median 15.3-year follow-up, 2,543 cases of CHD occurred, and 5,648 individuals died from all causes. The average HRD-score was 73 (SD=10). High adherence to the HRD was associated with a 15% lower risk of CHD (hazard ratio 0.85, 95% confidence interval 0.75 to 0.96), as well as a 17% lower risk of all-cause mortality (hazard ratio 0.83, 95% confidence interval 0.77 to 0.90) in multivariable-adjusted models. Better adherence to the HRD was associated with lower environmental impact from GHGE (β= -0.10 kg CO2-eq, 95% confidence interval -0.13 to -0.07), land use (β= -0.11 m2 per year, 95% confidence interval -0.12 to -0.09), freshwater eutrophication (β= -0.000002 kg P-eq, 95% confidence interval -0.000004 to -0.000001), marine eutrophication (β= -0.00035 kg N-eq, 95% confidence interval -0.00042 to -0.00029), and terrestrial acidification (β = -0.004 kg SO2-eq, 95% confidence interval -0.004 to -0.003), but with higher environmental impact from blue water use (β=0.044 m3, 95% confidence interval 0.043 to 0.045). Conclusion: High adherence to the HRD was associated with lower risk of CHD and all-cause mortality. Additionally, increasing adherence to the HRD could lower some aspects of the environmental impact of diets, but attention is needed for the associated increase in blue water use.


2021 ◽  
Author(s):  
Giulia Cappiello ◽  
Clizia Aversa ◽  
Annalisa Genovesi ◽  
Massimiliano Barletta

Abstract The dairy market is one of the most important sectors worldwide and milk packaging contributes to over one third of the global dairy packaging demand. The end-of-life of the disposable packages is a critical stage of their life cycle, as demonstrated by the fact that disposable bottles are one of the litter items that are most found on beach shores. The aim of this paper is to analyse the performance of Bio-plastic bottles compared to other alternatives currently in use in the milk packaging sector, using the Life Cycle Assessment (LCA) methodology. Bio-compostable plastic can be a powerful means to create a circular economy for disposable items. A PLA-based bottle is compared to a PET bottle, a HDPE bottle, a Multilayer carton and a Glass bottle. In the analysis, also secondary and tertiary packaging is included. The functional unit chosen is “the packaging needed to contain 1 litre of ESL milk and to guarantee a shelf life of 30 days”. Two sensitivity analysis are also performed in order to assess the influence of the end-of-life stage on the total impact. The results show that Bioplastic system has a better performance than fossil-based systems and Multilayer carton in the categories of Climate Change, Ozone Depletion, Human toxicity and Freshwater Eutrophication. The recycling scenario strongly changes the impact of the Glass packaging system in the considered categories.


2021 ◽  
Vol 13 (5) ◽  
pp. 2525
Author(s):  
Camila López-Eccher ◽  
Elizabeth Garrido-Ramírez ◽  
Iván Franchi-Arzola ◽  
Edmundo Muñoz

The aim of this study is to assess the environmental impacts of household life cycles in Santiago, Chile, by household income level. The assessment considered scenarios associated with environmental policies. The life cycle assessment was cradle-to-grave, and the functional unit considered all the materials and energy required to meet an inhabitant’s needs for one year (1 inh/year). Using SimaPro 9.1 software, the Recipe Midpoint (H) methodology was used. The impact categories selected were global warming, fine particulate matter formation, terrestrial acidification, freshwater eutrophication, freshwater ecotoxicity, mineral resource scarcity, and fossil resource scarcity. The inventory was carried out through the application of 300 household surveys and secondary information. The main environmental sources of households were determined to be food consumption, transport, and electricity. Food consumption is the main source, responsible for 33% of the environmental impacts on global warming, 69% on terrestrial acidification, and 29% on freshwater eutrophication. The second most crucial environmental hotspot is private transport, whose contribution to environmental impact increases as household income rises, while public transport impact increases in the opposite direction. In this sense, both positive and negative environmental effects can be generated by policies. Therefore, life-cycle environmental impacts, the synergy between policies, and households’ socio-economic characteristics must be considered in public policy planning and consumer decisions.


Sign in / Sign up

Export Citation Format

Share Document