Removal Processes
Recently Published Documents





2021 ◽  
Vol 9 ◽  
Christoph Mayer ◽  
Carlo Licciulli

It can easily be expected that debris-covered glaciers show a different response on external forcing compared to clean-surface glaciers. The supra-glacial debris cover acts as an additional transfer layer for the energy exchange between atmosphere and ice. The related glacier reaction is the integral of local effects, which changes strongly between enhanced melt for thin debris layers and considerably reduced melt for thicker debris. Therefore, a realistic feedback study can only be performed, if both the ice flow and the debris-influenced melt is treated with a high degree of detail. We couple a full Stokes representation of ice dynamics and the most complete description of energy transfer through the debris layer, in order to describe the long-term glacier reaction in the coupled system. With this setup, we can show that steady-state conditions are highly unlikely for glaciers, in case debris is not unloaded from the surface. For continuous and complete debris removal from the lowermost glacier tongue, however, a balance of the debris budget and the glacier conditions are possible. Depending on displacement and removal processes, our results demonstrate that debris-covered glaciers have an inherent tendency to switch to an oscillating state. Then, glacier mass balance and debris balance are out of phase, such that glacier advance periods end with the separation of the heavily debris-loaded lowermost glacier tongue, at time scales of decades to centuries. As these oscillations are inherent and happen without any variations in climatic forcing, it is difficult to interpret modern observations on the fluctuation of debris-covered glaciers on the basis of a changing climate only.

2021 ◽  
John Longo Masengo ◽  
Jean Mulopo

Abstract Low-cost bio-adsorbents were synthesized using two types of sewage sludge: D, which was obtained during the dissolved air flotation stage, and S, which was a mixture of primary and secondary sludge from the digestion and dewatering stages. The sewage sludge was mixed with waste coal before being activated with Potassium Hydroxide (KOH) and oxidized with ammonium persulfate (APS). The nitrate and methyl red removal capacities of the synthesized bio-adsorbents were evaluated and compared to those of industrial activated charcoal. The oxidation surface area of bio-adsorbents derived from sludge S shrank by six fold after modification, while those derived from D only varied narrowly from 312,72 m2/g to 282,22 m2/g, but surface modification had no effect on inorganic composition in either case. The adsorption of nitrate and methyl red (MR) was performed in batch mode, and the removal processes followed the pseudo second order kinetic model and the Langmuir isotherm fairly well. The adsorption capacities of nitrate and MR were higher at pH=2 and pH=4, respectively. The total nitrate Langmuir adsorption potential was DC-5-750 (26,735 mg/g) > commercial activated carbon (Com-AC) (20,61 mg/g) > DC-55-750M1 (17,06 mg/g), and for MR, Com-AC (196,07 mg/g) > DC-5-750M2 (175 mg/g).Statement of Novelty: This paper examines how the chemical structure of activated carbon derived from sewage sludge and blended with waste coal is altered during the chemical activation process to provide the optimal porous surface for nitrate and methyl red adsorptive remediation. The formation of carboxylic sites or the transformation of oxygen sites to carboxylic sites is the aim of the oxidation process of activated carbon in general. Ammonium peroxydisulfate was chosen because of its ability to oxidize the surface without significantly altering the porous structure and increase surface acidity by increasing carboxylic group presence. There are no studies that we are aware of that use ammonium peroxydisulfate to oxidize activated carbon from sewage sludge blended with waste coal

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2257
Krisana Nilsuwan ◽  
Kasidate Chantakun ◽  
Lalita Chotphruethipong ◽  
Soottawat Benjakul

Lipid oxidation has a negative impact on application and stability of hydrolyzed collagen (HC) powder from fatty fish skin. This study aimed to produce fat-free HC powder from salmon skin via optimization of one-step hydrolysis using mixed proteases (papain and Alcalase) at different levels. Fat removal processes using disk stack centrifugal separator (DSCS) for various cycles and subsequent defatting of HC powder using isopropanol for different cycles were also investigated. One-step hydrolysis by mixed proteases (3% papain and 4% Alcalase) at pH 8 and 60 °C for 240 min provided HC with highest degree of hydrolysis. HC powder having fat removal with DSCS for 9 cycles showed the decreased fat content. HC powder subsequently defatted with isopropanol for 2 cycles (HC-C9/ISP2) had no fat content with lowest fishy odor intensity, peroxide value, and thiobarbituric acid reactive substances than those without defatting and with 1-cycle defatting. HC-C9/ISP2 had high L*-value (84.52) and high protein (94.72%). It contained peptides having molecular weight less than 3 kDa. Glycine and imino acids were dominant amino acid. HC-C9/ISP2 had Na, Ca, P, and lowered odorous constituents. Combined processes including hydrolysis and defatting could therefore render HC powder free of fat and negligible fishy odor.

Asli Aykac ◽  
Ahmet Özer Sehirli

AbstractDespite many years of research, radical treatment of Alzheimer's disease (AD) has still not been found. Amyloid-β (Aβ) peptide is known to play an important role in the pathogenesis of this disease. AD is characterized by three main changes occurring in the central nervous system: (1) Aβ plaque accumulation that prevents synaptic communication, (2) the accumulation of hyperphosphorylated tau proteins that inhibit the transport of molecules inside neurons, and (3) neuronal cell loss of the limbic system. Mechanisms leading to Aβ accumulation in AD are excessive Aβ production as a result of mutations in amyloid precursor protein or genes, and impairment of clearance of Aβ due to changes in Aβ aggregation properties and/or Aβ removal processes. Human ATP-binding cassette (ABC) transporters are expressed in astrocyte, microglia, neuron, brain capillary endothelial cell, choroid plexus, choroid plexus epithelial cell, and ventricular ependymal cell. ABC transporters have essential detoxification and neuroprotective roles in the brain. The expression and functional changes in ABC transporters contribute to the accumulation of Aβ peptide. In conclusion, the review was aimed to summarize and highlight accumulated evidence in the literature focusing on the changing functions of human ABC transporter members, in AD pathogenesis and progression.

Georgios Samiotis ◽  
Kostas Stamatakis ◽  
Elisavet Amanatidou

Abstract Industrial wastewaters are recognized as a valuable resource, however their disposal without proper treatment can result in environmental deterioration. The associated environmental/operational cost of wastewater treatment necessitates upgrade of applied processes towards the goals of sustainability and mitigation of climate change. The implementation of cyanobacteria-based processes can contribute to these goals via resources recovery, production of high-value products, carbon fixation and green-energy production. The present study evaluates the cyanobacterium Synechococcus elongatus PCC 7942 (S7942) as a biological component for novel and sustainable alternatives to typical biological nutrient removal processes. Valuable results regarding cultivation temperature boundaries, applied disinfection techniques and analytical methods, as well as regarding relations between parameters expressing S7942 biomass concentration are presented. The results show that at typical industrial wastewater temperatures, S7942 efficiently grew and removed nitrates from treated snack-industry's wastewater. Moreover, in cultures with treated and relatively saline dairy wastewater, its growth rate slightly decreased, but nevertheless nitrates removal rate remained efficiently high. A comparison between typical denitrification processes and the proposed nutrient removal process indicated that a S7942-based system may constitute an alternative or a supplementary to denitrification process. Thus, Synechococcus elongatus PCC 7942 proved to be a potent candidate towards sustainable industrial wastewater treatment applications.

2021 ◽  
Vol 13 (16) ◽  
pp. 8727
Fatemeh Talebzadeh ◽  
Caterina Valeo ◽  
Rishi Gupta ◽  
C. Peter Constabel

Carwash wastewater (CWW) can be a significant source of environmental pollution due to the diversity and high concentrations of contaminants it contains. This toxic wastewater can contain several different heavy metals that if left untreated, can enter surface and sub-surface waters. Innovative, nature-based solutions such as low-impact development (LID) technologies may provide an eco-friendly CWW treatment process that is both effective and affordable. This research reviews the available literature to provide definitive values of flowrate and contaminant concentrations found in CWW around the globe. Dividing LID technologies into two groups, vegetated and unvegetated systems, the authors explored the literature for the general performance of these technologies to sustainably treat heavy metals in CWW. Depending on the car wash’s size and intended purpose, whether cleaning vehicles in agriculture-based rural communities, mining, or in high-density urban environments, volumetric flowrates requiring treatment found in six different countries ranged from 35–400 L/car. CWW also contains a wide range of contaminants at various levels, including COD, turbidity, TDS and TSS, surfactants, oils and greases, and heavy metals such as lead, cadmium, zinc, copper, chromium, and iron. Heavy metal removal by both vegetated and unvegetated LIDs shows mixed results in the literature, but given the different processes involved in both types, the authors propose a system that combines these types in order to provide all the necessary removal processes, including mechanical filtration, adsorption, sedimentation, chemical and biological treatment processes.

2021 ◽  
pp. 150854
Minhua Zhang ◽  
Suocheng Chi ◽  
Heyuan Huang ◽  
Yingzhe Yu

Hongwei Sun ◽  
Xin Zhang ◽  
Feng Zhang ◽  
Hao Yang ◽  
Jianbo Lu ◽  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3676
Simona Filice ◽  
Corrado Bongiorno ◽  
Sebania Libertino ◽  
Giuseppe Compagnini ◽  
Leon Gradon ◽  

In this work, raw halloysite mineral from Dunino (Poland) has been characterized and tested as an efficient and low-cost adsorbent for dye removal from water. The morphology and structure of this clay were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and the chemical composition was evaluated by means of X-ray fluorescence spectroscopy (XRF), energy dispersive X-ray spectroscopy (EDX), and electron energy loss spectroscopy (EELS). The results showed that it is made up of both platy and tubular structures, mainly composed of Si, Al, and O. Iron oxide particles covering the platy structures were also observed. The surface charge of halloysite was measured by z-potential measurements and by the evaluation of the point of zero charge. The clay was tested as an adsorbent for the removal of positively and negatively charged dye molecules, i.e., methylene blue (MB) and methyl orange (MO), both separately and in a mixed-dye solution. Halloysite showed the ability to efficiently and selectively remove MB molecules by adsorption, both in a single-dye solution and in a mixed one. The adsorption of positive dyes on the clay surface mainly occurred through ion exchange at negatively charged sites on its surface. The possibility of regenerating the clay for further dye removal processes is also shown.

2021 ◽  
Vol 43 (6) ◽  
pp. 443-452
Taewook Kim ◽  
Sunjoo Cho ◽  
Sung-Hyun Kwon ◽  
Daechul Cho

Objectives : Nitrogen removal processes are very important in terms of water conservation. Among them, the MLE process has been difficult to optimize because it has many variations and required experiences in operation.Methods : In this work, we quantitatively analyzed the nitrification of the MLE process using the STOAT simulation program. In particular, we attempted to improve nitrification rate even at lower water temperatures.Results and Discussion : As a result, more than 93% ammonia was nitrificated when the water temperature was above 20℃, and a lower reduction rate of ammonia was observed when the temperature was below 15℃. Simulations applying three process variables (MLSS, DO concentration, and RAS) were carried out once or several times to increase nitrogen removal efficiency at 10℃, and the most efficient variable was ‘RAS increase’(55% reduction of ammonia).Conclusions : For more efficient nitrification rate, simultaneous increases in RAS and DO were required. In this case, the ammonia concentration in the effluent dropped by 61.4% and it was desirable to increase the MLSS return volume for T-N concentration reduction.

Sign in / Sign up

Export Citation Format

Share Document