phase relationships
Recently Published Documents


TOTAL DOCUMENTS

1020
(FIVE YEARS 66)

H-INDEX

70
(FIVE YEARS 2)

2021 ◽  
Vol 21 (24) ◽  
pp. 18531-18542
Author(s):  
William J. Randel ◽  
Fei Wu ◽  
Alison Ming ◽  
Peter Hitchcock

Abstract. Observations show strong correlations between large-scale ozone and temperature variations in the tropical lower stratosphere across a wide range of timescales. We quantify this behavior using monthly records of ozone and temperature data from Southern Hemisphere Additional Ozonesonde (SHADOZ) tropical balloon measurements (1998–2016), along with global satellite data from Aura microwave limb sounder and GPS radio occultation over 2004–2018. The observational data demonstrate strong in-phase ozone–temperature coherence spanning sub-seasonal, annual and interannual timescales, and the slope of the temperature–ozone relationship (T / O3) varies as a function of timescale and altitude. We compare the observations to idealized calculations based on the coupled zonal mean thermodynamic and ozone continuity equations, including ozone radiative feedbacks on temperature, where both temperature and ozone respond in a coupled manner to variations in the tropical upwelling Brewer–Dobson circulation. These calculations can approximately explain the observed (T / O3) amplitude and phase relationships, including sensitivity to timescale and altitude, and highlight distinct balances for “fast” variations (periods < 150 d, controlled by transport across background vertical gradients) and “slow” coupling (seasonal and interannual variations, controlled by radiative balances).


2021 ◽  
Vol 15 ◽  
Author(s):  
Hyoungkyu Kim ◽  
Amy McKinney ◽  
Joseph Brooks ◽  
George A. Mashour ◽  
UnCheol Lee ◽  
...  

Delirium is a major public health issue associated with considerable morbidity and mortality, particularly after surgery. While the neurobiology of delirium remains incompletely understood, emerging evidence suggests that cognition requires close proximity to a system state called criticality, which reflects a point of dynamic instability that allows for flexible access to a wide range of brain states. Deviations from criticality are associated with neurocognitive disorders, though the relationship between criticality and delirium has not been formally tested. This study tested the primary hypothesis that delirium in the postanesthesia care unit would be associated with deviations from criticality, based on surrogate electroencephalographic measures. As a secondary objective, the impact of caffeine was also tested on delirium incidence and criticality. To address these aims, we conducted a secondary analysis of a randomized clinical trial that tested the effects of intraoperative caffeine on postoperative recovery in adults undergoing major surgery. In this substudy, whole-scalp (16-channel) electroencephalographic data were analyzed from a subset of trial participants (n = 55) to determine whether surrogate measures of neural criticality – (1) autocorrelation function of global alpha oscillations and (2) topography of phase relationships via phase lag entropy – were associated with delirium. These measures were analyzed in participants experiencing delirium in the postanesthesia care unit (compared to those without delirium) and in participants randomized to caffeine compared to placebo. Results demonstrated that autocorrelation function in the alpha band was significantly reduced in delirious participants, which is important given that alpha rhythms are postulated to play a vital role in consciousness. Moreover, participants randomized to caffeine demonstrated increased alpha autocorrelation function concurrent with reduced delirium incidence. Lastly, the anterior-posterior topography of phase relationships appeared most preserved in non-delirious participants and in those receiving caffeine. These data suggest that early postoperative delirium may reflect deviations from neural criticality, and caffeine may reduce delirium risk by shifting cortical dynamics toward criticality.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yann Roussel ◽  
Stephanie F Gaudreau ◽  
Emily R Kacer ◽  
Mohini Sengupta ◽  
Tuan V Bui

Many spinal circuits dedicated to locomotor control have been identified in the developing zebrafish. How these circuits operate together to generate the various swimming movements during development remains to be clarified. In this study, we iteratively built models of developing zebrafish spinal circuits coupled to simplified musculoskeletal models that reproduce coiling and swimming movements. The neurons of the models were based upon morphologically or genetically identified populations in the developing zebrafish spinal cord. We simulated intact spinal circuits as well as circuits with silenced neurons or altered synaptic transmission to better understand the role of specific spinal neurons. Analysis of firing patterns and phase relationships helped identify possible mechanisms underlying the locomotor movements of developing zebrafish. Notably, our simulations demonstrated how the site and the operation of rhythm generation could transition between coiling and swimming. The simulations also underlined the importance of contralateral excitation to multiple tail beats. They allowed us to estimate the sensitivity of spinal locomotor networks to motor command amplitude, synaptic weights, length of ascending and descending axons, and firing behaviour. These models will serve as valuable tools to test and further understand the operation of spinal circuits for locomotion.


Author(s):  
Ketong Luo ◽  
Jianlie Liang ◽  
Jinming Zhu ◽  
Xuehong Cui

Abstract The Fe-rich corner of the Ce–Nd–B–Fe quaternary system at 773 K has been experimentally investigated by means of X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy techniques. No quaternary compound was observed in this system. Ce2Fe14B and Nd2Fe14B were found to form the continuous solid solution (Ce,Nd)2Fe14B. Ce-Fe4B4 and NdFe4B4 also form the solid solution (Ce,Nd)-Fe4B4. The isothermal section consists of 8 three-phase regions and 2 four-phase regions.


2021 ◽  
Vol 18 (182) ◽  
pp. 20210454
Author(s):  
Natthapong Sueviriyapan ◽  
Daniel Granados-Fuentes ◽  
Tatiana Simon ◽  
Erik D. Herzog ◽  
Michael A. Henson

In the suprachiasmatic nucleus (SCN), γ-aminobutyric acid (GABA) is a primary neurotransmitter. GABA can signal through two types of GABA A receptor subunits, often referred to as synaptic GABA A (gamma subunit) and extra-synaptic GABA A (delta subunit). To test the functional roles of these distinct GABA A in regulating circadian rhythms, we developed a multicellular SCN model where we could separately compare the effects of manipulating GABA neurotransmitter or receptor dynamics. Our model predicted that blocking GABA signalling modestly increased synchrony among circadian cells, consistent with published SCN pharmacology. Conversely, the model predicted that lowering GABA A receptor density reduced firing rate, circadian cell fraction, amplitude and synchrony among individual neurons. When we tested these predictions, we found that the knockdown of delta GABA A reduced the amplitude and synchrony of clock gene expression among cells in SCN explants. The model further predicted that increasing gamma GABA A densities could enhance synchrony, as opposed to increasing delta GABA A densities. Overall, our model reveals how blocking GABA A receptors can modestly increase synchrony, while increasing the relative density of gamma over delta subunits can dramatically increase synchrony. We hypothesize that increased gamma GABA A density in the winter could underlie the tighter phase relationships among SCN cells.


Georesursy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 164-176
Author(s):  
Sergey A. Marakushev ◽  
Olga V. Belonogova

On the basis of an inorganic concept of the petroleum origin, the phase relationships of crystalline kerogens of black shales and liquid oil at the physicochemical conditions of a typical geobarotherm on the Texas Gulf Coast are considered. At the conditions of the carbon dioxide (CO2) high fluid pressure, the process of oil transformation into kerogens of varying degrees of “maturity” (retrograde metamorphism) takes place with decreasing temperature and hydrogen pressure. Kerogen generation in black shale rocks occurs by the sequential transition through metastable equilibria of liquid oil and crystalline kerogens (phase “freezing” of oil). The upward migration of hydrocarbons (HC) of oil fluids, clearly recorded in the processes of oil deposit replenishment in oil fields, shifts the oil ↔ kerogen equilibrium towards the formation of kerogen. In addition, with decreasing of the hydrogen chemical potential as a result of the process of high-temperature carboxylation and low-temperature hydration of oil hydrocarbons, the “mature” and “immature” kerogens are formed, respectively. The phase relationships of crystalline black shale kerogens and liquid oil under hypothetical conditions of high fluid pressure of the HC generated in the regime of geodynamic compression of silicate shells of the Earth in the result of the deep alkaline magmatism development. It is substantiated that a falling of hydrogen pressure in rising HC fluids will lead to the transformation of fluid hydrocarbons into liquid oil, and as the HC fluids rise to the surface, the HC ↔oil ↔ kerogen equilibrium will shift towards the formation of oil and kerogen. It is round that both in the geodynamic regime of compression and in the regime of expansion of the mantle and crust, carboxylation and hydration are the main geochemical pathways for the transformation of oil hydrocarbons into kerogen and, therefore, the most powerful geological mechanism for the black shale formations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryan T. Schroeder ◽  
James L. Croft ◽  
John E. A. Bertram

AbstractDuring locomotion, humans sometimes entrain (i.e. synchronize) their steps to external oscillations: e.g. swaying bridges, tandem walking, bouncy harnesses, vibrating treadmills, exoskeletons. Previous studies have discussed the role of nonlinear oscillators (e.g. central pattern generators) in facilitating entrainment. However, the energetics of such interactions are unknown. Given substantial evidence that humans prioritize economy during locomotion, we tested whether reduced metabolic expenditure is associated with human entrainment to vertical force oscillations, where frequency and amplitude were prescribed via a custom mechatronics system during walking. Although metabolic cost was not significantly reduced during entrainment, individuals expended less energy when the oscillation forces did net positive work on the body and roughly selected phase relationships that maximize positive work. It is possible that individuals use mechanical cues to infer energy cost and inform effective gait strategies. If so, an accurate prediction may rely on the relative stability of interactions with the environment. Our results suggest that entrainment occurs over a wide range of oscillation parameters, though not as a direct priority for minimizing metabolic cost. Instead, entrainment may act to stabilize interactions with the environment, thus increasing predictability for the effective implementation of internal models that guide energy minimization.


2021 ◽  
Author(s):  
Srinivas Gorur-Shandilya ◽  
Elizabeth M Cronin ◽  
Anna C Schneider ◽  
Sara Ann Haddad ◽  
Philipp Rosenbaum ◽  
...  

Neural circuits can generate many spike patterns, but only some are functional. The study of how circuits generate and maintain functional dynamics is hindered by a poverty of description of circuit dynamics across functional and dysfunctional states. For example, although the regular oscillation of a central pattern generator is well characterized by its frequency and the phase relationships between its neurons, these metrics are ineffective descriptors of the irregular and aperiodic dynamics that circuits can generate under perturbation or in disease states. By recording the circuit dynamics of the well-studied pyloric circuit in C. borealis, we used statistical features of spike times from neurons in the circuit to visualize the spike patterns generated by this circuit under a variety of conditions. This unsupervised approach captures both the variability of functional rhythms and the diversity of atypical dynamics in a single map. Clusters in the map identify qualitatively different spike patterns hinting at different dynamical states in the circuit. State probability and the statistics of the transitions between states varied with environmental perturbations, removal of descending neuromodulation, and the addition of exogenous neuromodulators. This analysis reveals strong mechanistically interpretable links between complex changes in the collective behavior of a neural circuit and specific experimental manipulations, and can constrain hypotheses of how circuits generate functional dynamics despite variability in circuit architecture and environmental perturbations.


Sign in / Sign up

Export Citation Format

Share Document