ice fraction
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Lukas Kucera ◽  
Martin Moos ◽  
Tomas Stetina ◽  
Jaroslava Korbelova ◽  
Petr Vodrazka ◽  
...  

Background: Organisms evolved biochemical strategies to cope with environmental stressors. For instance, insects that naturally tolerate internal freezing produce complex mixtures of multiple cryoprotectants (CPs). Better knowledge on composition of these mixtures, and on mechanisms of how the individual CPs interact, could inspire development of laboratory CP formulations optimized for cryopreservation of cells and other biological material. Results: Here we identify and quantify (using high resolution mass spectrometry) a range of putative CPs in larval tissues of a subarctic fly, Chymomyza costata, that survives long-term cryopreservation in liquid nitrogen. The CPs (proline, trehalose, glutamine, asparagine, glycine betaine, glycerophosphoethanolamine, glycerophosphocholine, and sarcosine) accumulate in hemolymph in a ratio of 313:108:55:26:6:4:3:0.5 mmol.L-1. Using calorimetry, we show that the artificial mixtures, mimicking the concentrations of major CPs' in hemolymph of freeze-tolerant larvae, suppress the melting point of water and significantly reduce the ice fraction. We demonstrate in a bioassay that mixtures of CPs administered through the diet act synergistically rather than additively to enable cryopreservation of otherwise freeze-sensitive larvae. Using MALDI-MSI, we show that during slow extracellular freezing of whole larvae trehalose becomes concentrated in partially dehydrated hemolymph and stimulates transition to the amorphous glass phase. In contrast, proline moves to the boundary between extracellular ice and dehydrated hemolymph and tissues where it likely forms a layer of dense viscoelastic liquid. Conclusion: Our results suggest that different components of innate cryoprotective mixtures of freeze-tolerant insect act in synergy during extracellular freezing. We propose that transitions to amorphous glass (stimulated by trehalose) and viscoelastic liquids (having proline as major component) may protect macromolecules and cells from thermomechanical shocks associated with freezing and transfer into and out of liquid nitrogen.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yong Han ◽  
Hao Luo ◽  
Yonghua Wu ◽  
Yijun Zhang ◽  
Wenjie Dong

AbstractLightning flash rate is strongly influenced by cloud microphysics, such as cloud ice properties, but this relationship is poorly constrained. Here we analyze 20 years of satellite-derived lightning flash rate data and cloud water data from the ERA-Interim reanalysis above continental and ocean regions at a global scale. We find a robust modified gamma function relationship between cloud ice fraction and lightning rate. Lightning rate increases initially with increasing cloud ice fraction in stratocumulus, liquid clouds. Maximum flash rates are reached at a critical cloud ice fraction value that is associated with high top, large optical thickness, deep convective clouds. Beyond the critical value, lightning rate decreases as the ice fraction increases to values representative of cirrus, ice clouds. We find consistent critical ice fraction values over continental and oceanic regions, respectively, with a lower value over the continent due to greater cloud thickness at similar cloud top height. We suggest that our findings may help improve the accuracy of lightning forecast and hazard prediction.


2021 ◽  
Vol 21 (5) ◽  
pp. 3871-3897
Author(s):  
Ines Bulatovic ◽  
Adele L. Igel ◽  
Caroline Leck ◽  
Jost Heintzenberg ◽  
Ilona Riipinen ◽  
...  

Abstract. The potential importance of Aitken mode particles (diameters ∼ 25–80 nm) for stratiform mixed-phase clouds in the summertime high Arctic (>80∘ N) has been investigated using two large-eddy simulation models. We find that, in both models, Aitken mode particles significantly affect the simulated microphysical and radiative properties of the cloud and can help sustain the cloud when accumulation mode concentrations are low (< 10–20 cm−3), even when the particles have low hygroscopicity (hygroscopicity parameter – κ=0.1). However, the influence of the Aitken mode decreases if the overall liquid water content of the cloud is low, either due to a higher ice fraction or due to low radiative cooling rates. An analysis of the simulated supersaturation (ss) statistics shows that the ss frequently reaches 0.5 % and sometimes even exceeds 1 %, which confirms that Aitken mode particles can be activated. The modelling results are in qualitative agreement with observations of the Hoppel minimum obtained from four different expeditions in the high Arctic. Our findings highlight the importance of better understanding Aitken mode particle formation, chemical properties and emissions, particularly in clean environments such as the high Arctic.


2021 ◽  
Author(s):  
Richard Sims ◽  
Brian Butterworth ◽  
Tim Papakyriakou ◽  
Mohamed Ahmed ◽  
Brent Else

&lt;p&gt;Remoteness and tough conditions have made the Arctic Ocean historically difficult to access; until recently this has resulted in an undersampling of trace gas and gas exchange measurements. The seasonal cycle of sea ice completely transforms the air sea interface and the dynamics of gas exchange. To make estimates of gas exchange in the presence of sea ice, sea ice fraction is frequently used to scale open water gas transfer parametrisations. It remains unclear whether this scaling is appropriate for all sea ice regions. Ship based eddy covariance measurements were made in Hudson Bay during the summer of 2018 from the icebreaker CCGS Amundsen. We will present fluxes of carbon dioxide (CO&lt;sub&gt;2&lt;/sub&gt;), heat and momentum and will show how they change around the Hudson Bay polynya under varying sea ice conditions. We will explore how these fluxes change with wind speed and sea ice fraction. As freshwater stratification was encountered during the cruise, we will compare our measurements with other recent eddy covariance flux measurements made from icebreakers and also will compare our turbulent CO&lt;sub&gt;2&amp;#160;&lt;/sub&gt;fluxes with bulk fluxes calculated using underway and surface bottle pCO&lt;sub&gt;2&lt;/sub&gt;&amp;#160;data.&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
Stefanie Arndt ◽  
Hanno Meyer ◽  
Ilka Peeken ◽  
Christian Haas

&lt;p&gt;Summer sea ice extent in the Weddell Sea has increased overall during the last four decades, with large interannual variations. However, the underlying causes and the related ice and snow properties are still poorly known.&lt;/p&gt;&lt;p&gt;Here, we present results of the interdisciplinary Weddell Sea Ice (WedIce) project carried out in the northwestern Weddell Sea on board the German icebreaker R/V Polarstern in February and March 2019, i.e. at the end of the summer ablation period, focusing on 21 ice cores sampled for texture, salinity and isotope analysis.&lt;/p&gt;&lt;p&gt;The ice at the coring sites had an average thickness of 178 cm with an average snow depth of 13 cm and a consistently positive freeboard. Isotope and salinity analyses revealed an average meteoric ice fraction of 23%. This included about 17% (22cm) snow-ice, saline sea ice formed by flooding and refreezing of snow at the snow/ice interface. In contrast, superimposed ice, fresh sea ice formed through melting and refreezing of snow only, account for about 6% (11cm) of the sea-ice thickness. The comparison of our results with previous expeditions to the same region shows that the thickness of superimposed ice has hardly increased, indicating no dominant changes in the amount of surface summer melt/thaw, despite the observed sea ice decline in the northwestern Weddell Sea during summer in recent years.&lt;/p&gt;&lt;p&gt;However, we consider the evolution of snow properties, and in particular the proportion of meteoric ice in the snow cover, as a critical indicator for significant changes in the coupled atmosphere/sea ice/ocean system.&lt;/p&gt;


2020 ◽  
Vol 33 (9) ◽  
pp. 3711-3730
Author(s):  
Liping Ma ◽  
Tim Woollings ◽  
Richard G. Williams ◽  
Doug Smith ◽  
Nick Dunstone

AbstractThe role of the atmospheric jet stream in driving patterns of surface heat flux, changes in sea surface temperature, and sea ice fraction is explored for the winter North Atlantic. Seasonal time-scale ensemble hindcasts from the Met Office Hadley Centre are analyzed for each winter from 1980 to 2014, which for each year includes 40 ensemble members initialized at the start of November. The spread between ensemble members that develops during a season is interpreted to represent the ocean response to stochastic atmospheric variability. The seasonal coupling between the winter atmosphere and the ocean over much of the North Atlantic reveals anomalies in surface heat loss driving anomalies in the tendency of sea surface temperature. The atmospheric jet, defined either by its speed or latitude, strongly controls the winter pattern of air–sea latent and sensible heat flux anomalies, and subsequent sea surface temperature anomalies. On time scales of several months, the effect of jet speed is more pronounced than that of jet latitude on the surface ocean response, although the effect of jet latitude is important in altering the extent of the ocean subtropical and subpolar gyres. A strong jet or high jet latitude increases sea ice fraction over the Labrador Sea due to the enhanced transport of cold air from west Greenland, while sea ice fraction decreases along the east side of Greenland due either to warm air advection or a strong northerly wind along the east Greenland coast blowing surface ice away from the Fram Strait.


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 167 ◽  
Author(s):  
Alejandro De la Cruz Martínez ◽  
Rosa E. Delgado Portales ◽  
Jaime D. Pérez Martínez ◽  
José E. González Ramírez ◽  
Alan D. Villalobos Lara ◽  
...  

Ice cream viscosity is one of the properties that most changes during crystallization in scraped surface heat exchangers (SSHE), and its online measurement is not easy. Its estimation is necessary through variables that are easy to measure. The temperature and power of the stirring motor of the SSHE turn out to be this type of variable and are closely related to the viscosity. Therefore, a mathematical model based on these variables proved to be feasible. The development of this mathematical relationship involved the rheological study of the ice cream base, as well as the application of a method for its in situ melting in the rheometer as a function of the temperature, and the application of a mathematical model correlating the SSHE stirring power and the ice cream viscosity. The result was a coupled model based on both the temperature and stirring power of the SSHE, which allowed for online viscosity estimation with errors below 10% for crystallized systems with a 30% ice fraction at the exit of the SSHE. The model obtained is a first step in the search for control strategies for crystallization in SSHE.


Author(s):  
Janne Siren Fjærestad ◽  
Alex Klein-Paste ◽  
Johan Wåhlin

Anti-icing chemicals are commonly used to protect against hoar frost formation on roadways and bridges. Because of their negative impact on both environment and infrastructure, their use should be optimized. During conditions for hoar frost formation, this means that good knowledge is needed about when it is necessary to apply chemicals, and the corresponding protection time. A laboratory setup has been used to study the freezing process for a salted road surface during conditions for hoar frost formation, and a description of the process is given. It has been observed that freezing starts in the top layer of the applied solution, indicating the occurrence of a concentration gradient owing to accumulation of water molecules in the top layer. A British pendulum was used to simulate the mechanical load of traffic. The pendulum successfully destroyed the ice up to a certain ice fraction. This ice fraction was seen to depend on the amount of salt solution applied to the test sample. Finally, it has been illustrated how the maximum ice fraction can be used to calculate the amount of water allowed to be added to the road surface, and estimates of the protection time are given.


2019 ◽  
Vol 633 ◽  
pp. A10 ◽  
Author(s):  
Bertram Bitsch ◽  
Chiara Battistini

The composition of the protoplanetary disc is thought to be linked to the composition of the host star, where a higher overall metallicity provides the building blocks for planets. However, most of the planet formation simulations only link the stellar iron abundance [Fe/H] to planet formation and the iron abundance in itself is used as a proxy to scale all elements. On the other hand, large surveys of stellar abundances show that this is not true. Here we use stellar abundances from the GALAH surveys to determine the average detailed abundances of Fe, Si, Mg, O, and C for a broad range of host star metallicities with [Fe/H] spanning from −0.4 to +0.4. Using an equilibrium chemical model that features the most important rock-forming compounds as well as volatile contributions of H2O, CO2, CH4, and CO, we calculate the chemical composition of solid planetary building blocks around stars with different metallicities. Solid building blocks that are formed entirely interior to the water ice line (T > 150 K) only show an increase in Mg2SiO4 and a decrease in MgSiO3 for increasing host star metallicity, which is related to the increase of [Mg/Si] for higher [Fe/H]. Solid planetary building blocks forming exterior to the water ice line (T < 150 K), on the other hand, show dramatic changes in their composition. In particular, the water ice content decreases from around ~50% at [Fe/H] = −0.4 to ~6% at [Fe/H] = 0.4 in our chemical model. This is mainly caused by the increasing C/O ratio with increasing [Fe/H], which binds most of the oxygen in gaseous CO and CO2, resulting in a small water ice fraction. Planet formation simulations coupled with the chemical model confirm these results by showing that the water ice content of super-Earths decreases with increasing host star metallicity due to the increased C/O ratio. This decrease of the water ice fraction has important consequences for planet formation, planetary composition, and the eventual habitability of planetary systems formed around these high-metallicity stars.


2019 ◽  
Vol 12 (9) ◽  
pp. 5087-5099 ◽  
Author(s):  
Jonathan K. P. Shonk ◽  
Jui-Yuan Christine Chiu ◽  
Alexander Marshak ◽  
David M. Giles ◽  
Chiung-Huei Huang ◽  
...  

Abstract. Clouds present many challenges to climate modelling. To develop and verify the parameterisations needed to allow climate models to represent cloud structure and processes, there is a need for high-quality observations of cloud optical depth from locations around the world. Retrievals of cloud optical depth are obtainable from radiances measured by Aerosol Robotic Network (AERONET) radiometers in “cloud mode” using a two-wavelength retrieval method. However, the method is unable to detect cloud phase, and hence assumes that all of the cloud in a profile is liquid. This assumption has the potential to introduce errors into long-term statistics of retrieved optical depth for clouds that also contain ice. Using a set of idealised cloud profiles we find that, for optical depths above 20, the fractional error in retrieved optical depth is a linear function of the fraction of the optical depth that is due to the presence of ice cloud (“ice fraction”). Clouds that are entirely ice have positive errors with magnitudes of the order of 55 % to 70 %. We derive a simple linear equation that can be used as a correction at AERONET sites where ice fraction can be independently estimated. Using this linear equation, we estimate the magnitude of the error for a set of cloud profiles from five sites of the Atmospheric Radiation Measurement programme. The dataset contains separate retrievals of ice and liquid retrievals; hence ice fraction can be estimated. The magnitude of the error at each location was related to the relative frequencies of occurrence in thick frontal cloud at the mid-latitude sites and of deep convection at the tropical sites – that is, of deep cloud containing both ice and liquid particles. The long-term mean optical depth error at the five locations spans the range 2–4, which we show to be small enough to allow calculation of top-of-atmosphere flux to within 10 % and surface flux to about 15 %.


Sign in / Sign up

Export Citation Format

Share Document