collision avoidance system
Recently Published Documents


TOTAL DOCUMENTS

627
(FIVE YEARS 133)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
Manas Metar

Abstract: The future of automotive relies on the mechatronic and electronic systems. The worldwide growth of automotive towards electronic systems suggests that driverless cars would soon be the common commuters. With such improvements safety of the passengers becomes first priority for the manufacturers. Nowadays automobiles come with high end technologies and quick responsive electronic systems. In addition to the passive safety systems, active safety systems definitely avoid collision thereby reducing the chances of injury and death. This project shows the working of an active safety system that is collision avoidance system. To create the model, TINKERCAD software has been used and a detailed working is explained. As a result, the system detects traffic and can alert the driver and stop the vehicle before meeting the collision. Keywords: Active Safety System, Arduino, Tinkercad, Vehicle Electronics System, Automotive Safety System, Collision Avoidance System, Self-Driving Car, Driverless Vehicle.


2021 ◽  
Vol 9 (12) ◽  
pp. 1458
Author(s):  
Taewoong Hwang ◽  
Ik-Hyun Youn

The collision avoidance system is one of the core systems of MASS (Maritime Autonomous Surface Ships). The collision avoidance system was validated using scenario-based experiments. However, the scenarios for the validation were designed based on COLREG (International Regulations for Preventing Collisions at Sea) or are arbitrary. Therefore, the purpose of this study is to identify and systematize objective navigation situation scenarios for the validation of autonomous ship collision avoidance algorithms. A data-driven approach was applied to collect 12-month Automatic Identification System data in the west sea of Korea, to extract the ship’s trajectory, and to hierarchically cluster the data according to navigation situations. Consequently, we obtained the hierarchy of navigation situations and the frequency of each navigation situation for ships that sailed the west coast of Korea during one year. The results are expected to be applied to develop a collision avoidance test environment for MASS.


2021 ◽  
Author(s):  
Nanhang Luo ◽  
Fangyu Hu ◽  
Kunming Zhao ◽  
Zhaowei Du ◽  
Zijie Yan

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7360
Author(s):  
Paweł Rzucidło ◽  
Grzegorz Jaromi ◽  
Tomasz Kapuściński ◽  
Damian Kordos ◽  
Tomasz Rogalski ◽  
...  

In the near future, the integration of manned and unmanned aerial vehicles into the common airspace will proceed. The changes taking place mean that the safety of light aircraft, ultralight aircraft and unmanned air vehicles (UAV) will become an increasing problem. The IDAAS project (Intruder Detection And collision Avoidance System) meets the new challenges as it aims to produce technically advanced detection and collision avoidance systems for light and unmanned aerial vehicles. The work discusses selected elements of research and practical tests of the intruder detection vision system, which is part the of IDAAS project. At the outset, the current formal requirements related to the necessity of installing anticollision systems on aircraft are presented. The concept of the IDAAS system and the structure of algorithms related to image processing are also discussed. The main part of the work presents the methodology developed for the needs of dedicated flight tests, its implementation and the results obtained. The initial tests of the IDAAS system carried out on an ultralight aircraft generally indicate the possibility of the effective detection of intruders in the airspace with the use of vision methods, although they also indicated the existence of conditions in which this detection may prove difficult or even impossible.


2021 ◽  
pp. 159-167
Author(s):  
Lin Lin ◽  
Yao Cheng ◽  
Liu Zhiyong ◽  
Liu Yinchuan ◽  
Li Nisi

2021 ◽  
Vol 2062 (1) ◽  
pp. 012003
Author(s):  
V Gnanalakshmi ◽  
Rahul Raaj ◽  
V Suresh Kumar

Abstract To design a quad feed end-fire microstrip patch antenna for airborne systems. Basically these type of antennas are most helpful for avoiding mid-air collisions between aircraft. The microstrip patch antenna is very small in size and it is less in weight. Due to small size and less weight, it offers an easy design and fabrication process. The microstrip patch antenna has radiating patch on one side and ground on the other side. They operate at microwave frequencies. The low profile structure of microstrip antenna offers its wide use in wireless communication. They are used as communication antenna on missiles. Traffic alert and Collision Avoidance System (TCAS) is an airborne system which is utilized to provide the service as last defense equipment for avoiding mid-air collisions between the aircraft. 1.03 GHz and 1.09 GHz are the transmitting and receiving frequencies of the existing TCAS antenna respectively. In airborne systems, low aerodynamic drag is required. FR4 epoxy is chosen as the substrate material whose dielectric constant is 4.4. 1.06GHz is chosen as the design frequency, since it is centre frequency between 1.03GHz and 1.09GHz. Microstrip patch antenna always radiates in the broadside direction which is along elevation plane. Due to metallic cap, microstrip patch antenna can also radiate in the end fire radiation which is along the azimuth plane. The ground plane must have very large dimensions than the patch. This microstrip patch antenna working at UHF (Ultra High Frequency) band is designed and their parameters like gain, directivity, return loss, VSWR (Voltage Standing Wave Ratio) and radiation pattern have been analyzed and simulated using ANSYS HFSS (High Frequency Structure Stimulator).


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7131
Author(s):  
Akito Higatani ◽  
Wafaa Saleh

The dramatic progress of Intelligent Transportation Systems (ITS) has made autodriving technology extensively emphasised. Various models have been developed for the aim of modelling the behaviour of autonomous vehicles and their impacts on traffic, although there is still a lot to be researched about the technology. There are three main features that need to be represented in any car-following model to enable it to model autonomous vehicles: desired time gap, collision avoidance system and sensor detection range. Most available car-following models satisfy the first feature, most of the available car-following models do not satisfy the second feature and only few models satisfy the third feature. Therefore, conclusions from such models must be taken cautiously. Any of these models could be considered for updating to include a collision avoidance-system module, in order to be able to model autonomous vehicles. The Helly model is car-following model that has a simple structure and is sometimes used as the controller for Autonomous Vehicles (AV), but it does not have a collision avoidance concept. In this paper, the Helly model, which is a very commonly used classic car-following model is assessed and examined for possible update for the purpose of using it to model autonomous vehicles more efficiently. This involves assessing the parameters of the model and investigating the possible update of the model to include a collision avoidance-system module. There are two procedures that have been investigated in this paper to assess the Helly model to allow for a more realistic modelling of autonomous vehicles. The first technique is to investigate and assess the values of the parameters of the model. The second procedure is to modify the formula of that model to include a collision avoidance system. The results show that the performance of the modified full-range Auto Cruising Control (FACC) Helly model is superior to the other models in almost all situations and for almost all time-gap settings. Only the Alexandros E. Papacharalampous’s Model (A.E.P.) controller seems to perform slightly better than the (FACC) Helly model. Therefore, it is reasonable to suggest that the (FACC) Helly model be recommended as the most accurate model to use to represent autonomous vehicles in microsimulations, and that it should be further investigated.


2021 ◽  
Author(s):  
Tim Neidhardt ◽  
Pranav Nagarajan ◽  
Lukas Beller ◽  
Xiyao Chen ◽  
Florian Holzapfel

Sign in / Sign up

Export Citation Format

Share Document