fungal genomes
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 44)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Emile Gluck-Thaler ◽  
Timothy Ralston ◽  
Zachary Konkel ◽  
Cristhian Grabowski Ocampos ◽  
Veena Devi Ganeshan ◽  
...  

Accessory genes are variably present among members of a species and are a reservoir of adaptive functions. In bacteria, differences in gene distributions among individuals largely result from mobile elements that acquire and disperse accessory genes as cargo. In contrast, the impact of cargo-carrying elements on eukaryotic evolution remains largely unknown. Here, we show that variation in genome content within multiple fungal species is facilitated by Starships, a novel group of massive mobile elements that are 110 kb long on average, share conserved components, and carry diverse arrays of accessory genes. We identified hundreds of Starship-like regions across every major class of filamentous Ascomycetes, including 28 distinct Starships that range from 27-393 kb and last shared a common ancestor ca. 400 mya. Using new long-read assemblies of the plant pathogen Macrophomina phaseolina, we characterize 4 additional Starships whose past and ongoing activities contribute to standing variation in genome structure and content. One of these elements, Voyager, inserts into 5S rDNA and contains a candidate virulence factor whose increasing copy number has contrasting associations with pathogenic and saprophytic growth, suggesting Voyager activity underlies an ecological trade-off. We propose that Starships are eukaryotic analogs of bacterial integrative and conjugative elements based on parallels between their conserved components and may therefore represent the first known agents of active gene transfer in eukaryotes. Our results suggest that Starships have shaped the content and structure of fungal genomes for millions of years and reveal a new concerted route for evolution throughout an entire eukaryotic phylum.


Author(s):  
Xiaoyue Cui ◽  
Maureen Stolzer ◽  
Dannie Durand

The exon shuffling theory posits that intronic recombination creates new domain combinations, facilitating the evolution of novel protein function. This theory predicts that introns will be preferentially situated near domain boundaries. Many studies have sought evidence for exon shuffling by testing the correspondence between introns and domain boundaries against chance intron positioning. Here, we present an empirical investigation of how the choice of null model influences significance. Although genome-wide studies have used a uniform null model, exclusively, more realistic null models have been proposed for single gene studies. We extended these models for genome-wide analyses and applied them to 21 metazoan and fungal genomes. Our results show that compared with the other two models, the uniform model does not recapitulate genuine exon lengths, dramatically underestimates the probability of chance agreement, and overestimates the significance of intron-domain correspondence by as much as 100 orders of magnitude. Model choice had much greater impact on the assessment of exon shuffling in fungal genomes than in metazoa, leading to different evolutionary conclusions in seven of the 16 fungal genomes tested. Genome-wide studies that use this overly permissive null model may exaggerate the importance of exon shuffling as a general mechanism of multidomain evolution.


Author(s):  
Parisa Aris ◽  
Lihong Yan ◽  
Yulong Wei ◽  
Ying Chang ◽  
Bihong Shi ◽  
...  

Abstract The polyketide griseofulvin is a natural antifungal compound and research in griseofulvin has been key in establishing our current understanding of polyketide biosynthesis. Nevertheless, the griseofulvin gsf biosynthetic gene cluster (BGC) remains poorly understood in most fungal species, including Penicillium griseofulvum where griseofulvin was first isolated. To elucidate essential genes involved in griseofulvin biosynthesis, we performed third-generation sequencing to obtain the genome of Penicillium griseofulvum strain D-756. Furthermore, we gathered publicly available genome of 11 other fungal species in which gsf gene cluster was identified. In a comparative genome analysis, we annotated and compared the gsf BGC of all 12 fungal genomes. Our findings show no gene rearrangements at the gsf BGC. Furthermore, seven gsf genes are conserved by most genomes surveyed whereas the remaining six were poorly conserved. This study provides new insights into differences between gsf BGC and suggests that seven gsf genes are essential in griseofulvin production.


2021 ◽  
Author(s):  
Sriram Srikant ◽  
Rachelle Gaudet ◽  
Andrew W Murray

The mating of fungi depends on pheromones that mediate communication between two mating types. Most species use short peptides as pheromones, which are either unmodified (e.g., α-factor in Saccharomyces cerevisiae) or C-terminally farnesylated (e.g., a-factor in S. cerevisiae). Peptide pheromones have been found by genetics or biochemistry in small number of fungi, but their short sequences and modest conservation make it impossible to detect homologous sequences in most species. To overcome this problem, we used a four-step computational pipeline to identify candidate a-factor genes in sequenced genomes of the Saccharomycotina, the fungal clade that contains most of the yeasts: we require that candidate genes have a C-terminal prenylation motif, are fewer than 100 amino acids long, contain a proteolytic processing motif upstream of the potential mature pheromone sequence, and that closely related species contain highly conserved homologs of the potential mature pheromone sequence. Additional manual curation exploits the observation that many species carry more than one a-factor gene, encoding identical or nearly identical pheromones. From 332 fungal genomes, we identified strong candidate pheromone genes in 238 genomes, covering 13 clades that are separated from each other by at least 100 million years, the time required for evolution to remove detectable sequence homology. For one small clade, the Yarrowia, we demonstrated that our algorithm found the a-factor genes: deleting all four related genes in the a-mating type of Yarrowia lipolytica prevents mating.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xianyu Niu ◽  
Guijing Yang ◽  
Hui Lin ◽  
Yao Liu ◽  
Ping Li ◽  
...  

The necrotrophic phytopathogen Rhizoctonia solani (R. solani) is a fungus that causes disease in a wide range of plant species. Fungal genomes encode abundant, small cysteine-rich (SCR) secreted proteins, and the probable importance of these to pathogenesis has been highlighted in various pathogens. However, there are currently no reports of an R. solani SCR-secreted protein with evidential elicitor activity. In this study, the molecular function of 10 SCR-secreted protein genes from R. solani was explored by agroinfiltration into Nicotiana benthamiana (N. benthamiana) leaves, and a novel SCR protein RsSCR10 was identified that triggered cell death and oxidative burst in tobacco. RsSCR10 comprises 84 amino acids, including a signal peptide (SP) of 19 amino acids that is necessary for RsSCR10 to induce tobacco cell death. Elicitation of cell death by RsSCR10 was dependent on Hsp90 but not on RAR1, proving its effector activity. Two cysteine residues have important effects on the function of RsSCR10 in inducing cell death. Furthermore, RsSCR10 showed cross-interaction with five rice molecules, and the inferred functions of these rice proteins suggest they are instrumental in how the host copes with adversity. Overall, this study demonstrates that RsSCR10 is a potential effector that has a critical role in R. solani AG1 IA-host interactions.


Author(s):  
Lining Wang ◽  
Baosheng Liao ◽  
Lu Gong ◽  
Shuiming Xiao ◽  
Zhihai Huang

Heat stress is one of the most frequently encountered environmental stresses for most mushroom-forming fungi. Currently available fungal genomes are mostly haploid because high heterozygosity hinders diploid genome assembly.


IMA Fungus ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ole Christian Hagestad ◽  
Lingwei Hou ◽  
Jeanette H. Andersen ◽  
Espen H. Hansen ◽  
Bjørn Altermark ◽  
...  

ABSTRACTMarine fungi remain poorly covered in global genome sequencing campaigns; the 1000 fungal genomes (1KFG) project attempts to shed light on the diversity, ecology and potential industrial use of overlooked and poorly resolved fungal taxa. This study characterizes the genomes of three marine fungi: Emericellopsis sp. TS7, wood-associated Amylocarpus encephaloides and algae-associated Calycina marina. These species were genome sequenced to study their genomic features, biosynthetic potential and phylogenetic placement using multilocus data. Amylocarpus encephaloides and C. marina were placed in the Helotiaceae and Pezizellaceae (Helotiales), respectively, based on a 15-gene phylogenetic analysis. These two genomes had fewer biosynthetic gene clusters (BGCs) and carbohydrate active enzymes (CAZymes) than Emericellopsis sp. TS7 isolate. Emericellopsis sp. TS7 (Hypocreales, Ascomycota) was isolated from the sponge Stelletta normani. A six-gene phylogenetic analysis placed the isolate in the marine Emericellopsis clade and morphological examination confirmed that the isolate represents a new species, which is described here as E. atlantica. Analysis of its CAZyme repertoire and a culturing experiment on three marine and one terrestrial substrates indicated that E. atlantica is a psychrotrophic generalist fungus that is able to degrade several types of marine biomass. FungiSMASH analysis revealed the presence of 35 BGCs including, eight non-ribosomal peptide synthases (NRPSs), six NRPS-like, six polyketide synthases, nine terpenes and six hybrid, mixed or other clusters. Of these BGCs, only five were homologous with characterized BGCs. The presence of unknown BGCs sets and large CAZyme repertoire set stage for further investigations of E. atlantica. The Pezizellaceae genome and the genome of the monotypic Amylocarpus genus represent the first published genomes of filamentous fungi that are restricted in their occurrence to the marine habitat and form thus a valuable resource for the community that can be used in studying ecological adaptions of fungi using comparative genomics.


2021 ◽  
Vol 17 ◽  
pp. 1814-1827
Author(s):  
Jana M Boysen ◽  
Nauman Saeed ◽  
Falk Hillmann

The kingdom of fungi comprises a large and highly diverse group of organisms that thrive in diverse natural environments. One factor to successfully confront challenges in their natural habitats is the capability to synthesize defensive secondary metabolites. The genetic potential for the production of secondary metabolites in fungi is high and numerous potential secondary metabolite gene clusters have been identified in sequenced fungal genomes. Their production may well be regulated by specific ecological conditions, such as the presence of microbial competitors, symbionts or predators. Here we exemplarily summarize our current knowledge on identified secondary metabolites of the pathogenic fungus Aspergillus fumigatus and their defensive function against (microbial) predators.


Author(s):  
Sudheer Menon ◽  
Shanmughavel piramanayakam ◽  
Gopal Prasad Agarwal

Fungal promoter motif database is the collection of promoter motifs from fully sequenced fungal genomes. Promoter sequences and its frequency are analyzed by the positions of nucleotide sequence and its repetition. The fungal promoter motif database holds the promoter sequence motifs identified by genome wide motif discovery, similarity studies and clustering. These data sets are typically 6 to 10 bp long, that have been extracted from the promoter regions. These promoter regions extend from 1.5 kb upstream to 200bp downstream of a transcription start site. We believe that the availability of these promoter motifs will be a valuable resource for researchers for comparative sequence analysis and evolutionary studies.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4262
Author(s):  
Rachel Serrano ◽  
Víctor González-Menéndez ◽  
Germán Martínez ◽  
Clara Toro ◽  
Jesús Martín ◽  
...  

Microbial natural products are an invaluable resource for the biotechnological industry. Genome mining studies have highlighted the huge biosynthetic potential of fungi, which is underexploited by standard fermentation conditions. Epigenetic effectors and/or cultivation-based approaches have successfully been applied to activate cryptic biosynthetic pathways in order to produce the chemical diversity suggested in available fungal genomes. The addition of Suberoylanilide Hydroxamic Acid to fermentation processes was evaluated to assess its effect on the metabolomic diversity of a taxonomically diverse fungal population. Here, metabolomic methodologies were implemented to identify changes in secondary metabolite profiles to determine the best fermentation conditions. The results confirmed previously described effects of the epigenetic modifier on the metabolism of a population of 232 wide diverse South Africa fungal strains cultured in different fermentation media where the induction of differential metabolites was observed. Furthermore, one solid-state fermentation (BRFT medium), two classic successful liquid fermentation media (LSFM and YES) and two new liquid media formulations (MCKX and SMK-II) were compared to identify the most productive conditions for the different populations of taxonomic subgroups.


Sign in / Sign up

Export Citation Format

Share Document