foxo signaling pathway
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 21)

H-INDEX

11
(FIVE YEARS 4)

2021 ◽  
Vol 8 ◽  
Author(s):  
Jun Wang ◽  
Bo Wei ◽  
Kiran Thakur ◽  
Chu-Yan Wang ◽  
Ke-Xin Li ◽  
...  

Hepatocellular carcinoma is a malignancy with a low survival rate globally, and there is imperative to unearth novel natural phytochemicals as effective therapeutic strategies. Licochalcone A is a chalcone from Glycyrrhiza that displayed various pharmacological efficacy. A globally transcriptome analysis was carried out to reveal the gene expression profiling to explore Licochalcone A's function as an anti-cancer phytochemical on HepG2 cells and investigate its potential mechanisms. Altogether, 6,061 dysregulated genes were detected (3,414 up-regulated and 2,647 down-regulated). SP1 was expected as the transcription factor that regulates the functions of most screened genes. GO and KEGG analysis was conducted, and the MAPK signaling pathway and the FoxO signaling pathway were two critical signal pathways. Protein-protein interaction (PPI) network analysis based on STRING platform to discover the hub genes (MAPK1, ATF4, BDNF, CASP3, etc.) in the MAPK signaling pathway and (AKT3, GADD45A, IL6, CDK2, CDKN1A, etc.) the FoxO signaling pathway. The protein level of essential genes that participated in significant pathways was consistent with the transcriptome data. This study will provide an inclusive understanding of the potential anti-cancer mechanism of Licochalcone A on hepatocellular, signifying Licochalcone A as a promising candidate for cancer therapy.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1545
Author(s):  
Li Tang ◽  
Zihan Zeng ◽  
Yuanhao Zhou ◽  
Baikui Wang ◽  
Peng Zou ◽  
...  

Autophagy is a conserved proteolytic mechanism, which degrades and recycles damaged organs and proteins in cells to resist external stress. Probiotics could induce autophagy; however, its underlying molecular mechanisms remain elusive. Our previous study has found that BaSC06 could alleviate oxidative stress by inducing autophagy in rats. This research aimed to verify whether Bacillus amyloliquefaciens SC06 can induce autophagy to alleviate oxidative stress in IPEC-J2 cells, as well as explore its mechanisms. IPEC-J2 cells were first pretreated with 108 CFU/mL BaSC06, and then were induced to oxidative stress by the optimal dose of diquat. The results showed that BaSC06 significantly triggered autophagy, indicated by the up-regulation of LC3 and Beclin1 along with downregulation of p62 in IPEC-J2 cells. Further analysis revealed that BaSC06 inhibited the AKT–FOXO signaling pathway by inhibiting the expression of p-AKT and p-FOXO and inducing the expression of SIRT1, resulting in increasing the transcriptional activity of FOXO3 and gene expression of the ATG5–ATG12 complex to induce autophagy, which alleviated oxidative stress and apoptosis. Taken together, BaSC06 can induce AKT–FOXO-mediated autophagy to alleviate oxidative stress-induced apoptosis and cell damage, thus providing novel theoretical support for probiotics in the prevention and treatment of oxidative damage.


2021 ◽  
Author(s):  
Fengju Zhao ◽  
Yingchao Zhao ◽  
Biyuan Xing ◽  
Zhao Liu

Abstract Gonadoblastoma is a rare tumor comprised of sex cord derivatives and germ cells. The risk for developing gonadoblastoma increases significantly in patients who possess a Y chromosome or Y chromosome material. A 49-year-old Chinese woman found a pelvic mass during a routine physical examination. Pathological analysis after surgery indicated that the tumor was unilateral ovarian gonadoblastoma with dysgerminoma. Compared with other cases in the literature, our patient was the oldest, and the tumor mass was smaller. Karyotype analysis of peripheral blood lymphocytes revealed that the woman had a 46, XX female karyotype. Whole-exon sequencing revealed that some mutations, such as altered somatic genes in the Forkhead box protein O (FoxO) signaling pathway and KIT, might cause the disease. In conclusion, we described a rare case of gonadoblastoma in a woman who had normal routine menstruation, sexual development, and successful pregnancies and possessed a normal female 46, XX karyotype.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1245
Author(s):  
Shu Zhang ◽  
Qi Ge ◽  
Liang Chen ◽  
Keping Chen

Diabetes mellitus (DM), as a chronic disease caused by insulin deficiency or using obstacles, is gradually becoming a principal worldwide health problem. Pueraria lobata is one of the traditional Chinese medicinal and edible plants, playing roles in improving the cardiovascular system, lowering blood sugar, anti-inflammation, anti-oxidation, and so on. Studies on the hypoglycemic effects of Pueraria lobata were also frequently reported. To determine the active ingredients and related targets of Pueraria lobata for DM, 256 metabolites were identified by LC/MS non targeted metabonomics, and 19 active ingredients interacting with 51 DM-related targets were screened. The results showed that puerarin, quercetin, genistein, daidzein, and other active ingredients in Pueraria lobata could participate in the AGE-RAGE signaling pathway, insulin resistance, HIF-1 signaling pathway, FoxO signaling pathway, and MAPK signaling pathway by acting on VEGFA, INS, INSR, IL-6, TNF and AKT1, and may regulate type 2 diabetes, inflammation, atherosis and diabetes complications, such as diabetic retinopathy, diabetic nephropathy, and diabetic cardiomyopathy.


2021 ◽  
Vol 16 (7) ◽  
pp. 1934578X2110295
Author(s):  
Li Ou ◽  
Wenqian Kang ◽  
Jiahao Zhang ◽  
Peifeng Wei ◽  
Min Li ◽  
...  

Astragaloside IV is the main active ingredient of Astragalus membranaceus. Studies have found that it can promote the proliferation of osteoblasts and can antagonize the apoptosis of mouse osteoblasts induced by hydrogen peroxide, but its molecular mechanism for the treatment of osteoporosis is still not clear. First, we used 3 online platforms: CTD, PharmMapper and SwissTargetPrediction to retrieve the targets of Astragaloside IV, and collected osteoporosis-related targets. Next, we used Cytoscape 3.7.2 software to construct a visual network diagram of PPI and further screened the key genes of Astragaloside IV in the treatment of osteoporosis using cluster analysis. Finally, after the receptor and ligand were docked, the binding activity was assessed by docking score. We obtained 102 overlapping targets of Astragaloside IV and osteoporosis. According to the node degree value in the PPI network, the top 10 genes were PIK3CA, MAPK1, SRC, STAT3, VEGFA, HSP90AA1, RELA, AKT1, IGF1, EGFR, of which SRC, AKT1, PIK3CA could bind stably to Astragaloside IV. KEGG pathway enrichment results showed that Astragaloside IV treated osteoporosis through 10 main pathways, including PI3K-Akt signaling pathway, FoxO signaling pathway, MAPK pathway, and so on. The classification of these pathways belongs to signal transduction, immune system, development and regeneration and endocrine system. Astragaloside IV is significantly related to several pathways involved in osteoporosis, such as PI3K-Akt, FoxO signaling pathway and MAPK pathway. SRC, AKT1, and PIK3CA can bind stably with Astragaloside IV, and they may be hub genes for the treatment of osteoporosis.


2021 ◽  
Vol 22 (12) ◽  
pp. 6595
Author(s):  
Michiko Horiguchi ◽  
Yuya Turudome ◽  
Kentaro Ushijima

In cases of patients with rapidly progressive diabetes mellitus (DM), autologous stem cell transplantation is considered as one of the regenerative treatments. However, whether the effects of autonomous stem cell transplantation on DM patients are equivalent to transplantation of stem cells derived from healthy persons is unclear. This study revealed that adipose-derived mesenchymal stem cells (ADSC) derived from type II DM patients had lower transplantation efficiency, proliferation potency, and stemness than those derived from healthy persons, leading to a tendency to induce apoptotic cell death. To address this issue, we conducted a cyclopedic mRNA analysis using a next-generation sequencer and identified G6PC3 and IGF1, genes related to the FoxO signaling pathway, as the genes responsible for lower performance. Moreover, it was demonstrated that the lower transplantation efficiency of ADSCs derived from type II DM patients might be improved by knocking down both G6PC3 and IGF1 genes. This study clarified the difference in transplantation efficiency between ADSCs derived from type II DM patients and those derived from healthy persons and the genes responsible for the lower performance of the former. These results can provide a new strategy for stabilizing the quality of stem cells and improving the therapeutic effects of regenerative treatments on autonomous stem cell transplantation in patients with DM.


Healthcare ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 618
Author(s):  
Pengda Li ◽  
Li Luo

Background: Monocytes are critical components, not only for innate immunity, but also for the activation of the adaptive immune system. Many studies in animals and humans have demonstrated that monocytes may be closely associated with chronic inflammatory diseases and be proved to be pivotal in the association between high-intensity exercise and anti-inflammation response. However, the underlying molecular mechanisms driving this are barely understood. The present study aimed to screen for potential hub genes and candidate signaling pathways associated with the effects of high-intensity exercise on human monocytes through bioinformatics analysis. Materials and Methods: The GSE51835 gene expression dataset was downloaded from the Gene Expression Omnibus database. The dataset consists of 12 monocyte samples from two groups of pre-exercise and post-exercise individuals. Identifying differentially expressed genes (DEGs) with R software, and functional annotation and pathway analyses were then performed with related web databases. Subsequently, a protein–protein interaction (PPI) network which discovers key functional protein and a transcription factors-DEGs network which predicts upstream regulators were constructed. Results: A total of 146 differentially expressed genes were identified, including 95 upregulated and 51 downregulated genes. Gene Ontology analysis indicated that in the biological process functional group, these DEGs were mainly involved in cellular response to hydrogen peroxide, response to unfolded protein, negative regulation of cell proliferation, cellular response to laminar fluid shear stress, and positive regulation of protein metabolic process. The top five enrichment pathways in a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were the FoxO signaling pathway, protein processing in the endoplasmic reticulum, influenza A, the ErbB signaling pathway, and the MAPK signaling pathway. TNF, DUSP1, ATF3, CXCR4, NR4A1, BHLHE40, CDKN1B, SOCS3, TNFAIP3, and MCL1 were the top 10 potential hub genes. The most important modules obtained in the PPI network were performed KEGG pathway analysis, which showed that these genes were mainly involved in the MAPK signaling pathway, the IL-17 signaling pathway, the TNF signaling pathway, osteoclast differentiation, and apoptosis. A transcription factor (TF) target network illustrated that FOXJ2 was a critical regulatory factor. Conclusions: This study identified the essential genes and pathways associated with exercise and monocytes. Among these, four essential genes (TNF, DUSP1, CXCR4, and NR4A1) and the FoxO signaling pathway play vital roles in the immune function of monocytes. High-intensity exercise may improve the resistance of chronic inflammatory diseases by regulating the expression of these genes.


Sign in / Sign up

Export Citation Format

Share Document