casein kinase
Recently Published Documents


TOTAL DOCUMENTS

1998
(FIVE YEARS 209)

H-INDEX

100
(FIVE YEARS 7)

Author(s):  
Despina Smirlis ◽  
Florent Dingli ◽  
Valentin Sabatet ◽  
Aileen Roth ◽  
Uwe Knippschild ◽  
...  

Leishmaniasis is a severe public health problem, caused by the protozoan Leishmania. This parasite has two developmental forms, extracellular promastigote in the insect vector and intracellular amastigote in the mammalian host where it resides inside the phagolysosome of macrophages. Little is known about the virulence factors that regulate host-pathogen interactions and particularly host signalling subversion. All the proteomes of Leishmania extracellular vesicles identified the presence of Leishmania casein kinase 1 (L-CK1.2), a signalling kinase. L-CK1.2 is essential for parasite survival and thus might be essential for host subversion. To get insights into the functions of L-CK1.2 in the macrophage, the systematic identification of its host substrates is crucial, we thus developed an easy method to identify substrates, combining phosphatase treatment, in vitro kinase assay and Stable Isotope Labelling with Amino acids in Cell (SILAC) culture-based mass spectrometry. Implementing this approach, we identified 225 host substrates as well as a potential novel phosphorylation motif for CK1. We confirmed experimentally the enrichment of our substratome in bona fide L-CK1.2 substrates and showed they were also phosphorylated by human CK1δ. L-CK1.2 substratome is enriched in biological processes such as “viral and symbiotic interaction,” “actin cytoskeleton organisation” and “apoptosis,” which are consistent with the host pathways modified by Leishmania upon infection, suggesting that L-CK1.2 might be the missing link. Overall, our results generate important mechanistic insights into the signalling of host subversion by these parasites and other microbial pathogens adapted for intracellular survival.


2021 ◽  
Author(s):  
Long Ma ◽  
Yiman Hu ◽  
Zhaofa Xu

Abstract Animals utilize associated pathways to elicit responses to oxidative stress and infection. The molecular mechanisms coordinating these pathways remain unclear. Here, using C. elegans we identified the highly conserved casein kinase 1 gamma CSNK-1 (also known as CK1g or CSNK1G), as a key regulator of these processes. csnk-1 interacted with the bli-3/tsp-15/doxa-1 dual oxidase genes by nonallelic noncomplementation to negatively regulate animal survival in excess iodide, an oxidative stressor. A conserved interaction was detected between DOXA-1 and CSNK-1 and between their human homologs DUOXA2 and CSNK1G2. csnk-1 deficiency resulted in upregulated expression of innate immunity genes and increased animal survival in the pathogenic Pseudomonas aeruginosa PA14. Phosphoproteomic analyses identified decreased phosphorylation of key innate immunity regulators NSY-1 MAPKKK and LIN-45 Raf in csnk-1(lf) mutants. Indeed, NSY-1 and LIN-45 pathways were required for the increased survival of csnk-1-deficient animals in PA14. Further analyses suggest that CSNK-1 and SKN-1 Nrf2 might act in parallel to regulate oxidative stress response. Together, we propose that CSNK-1 CSNK1G plays a novel pivotal role in integrating animal’s responses to oxidative stress and pathogens.


2021 ◽  
Author(s):  
Edoardo Fatti ◽  
Alexander Hirth ◽  
Andrea Svorinic ◽  
Matthias Guenther ◽  
Cristina-Maria Cruciat ◽  
...  

DDX RNA helicases promote RNA processing but DDX3X is also known to activate casein kinase 1 ϵ (CK1ϵ). Here we show that not only is protein kinase stimulation a latent property of other DDX proteins towards CK1ϵ, but that this extends to casein kinase 2 (CK2α2) as well. CK2α2 enzymatic activity is stimulated by a variety of DDX proteins and we identify DDX1/24/41/54 as physiological activators required for full kinase activity in vitro and in Xenopus embryos. Mutational analysis of DDX3X reveals that CK1 and CK2 kinase stimulation engages its RNA binding- but not catalytic motifs. Mathematical modelling of enzyme kinetics and stopped-flow spectroscopy converge that DDX proteins function as nucleotide exchange factor towards CK2α2 that reduce unproductive reaction intermediates and substrate inhibition. Our study reveals protein kinase stimulation by nucleotide exchange as a new principle in kinase regulation and an evolved function of DDX proteins.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2157
Author(s):  
Alaa Shafie ◽  
Shama Khan ◽  
Zehra ◽  
Taj Mohammad ◽  
Farah Anjum ◽  
...  

Casein kinase-1 alpha (CK1α) is a multifunctional protein kinase that belongs to the serine/threonine kinases of the CK1α family. It is involved in various signaling pathways associated with chromosome segregation, cell metabolism, cell cycle progression, apoptosis, autophagy, etc. It has been known to involve in the progression of many diseases, including cancer, neurodegeneration, obesity, and behavioral disorders. The elevated expression of CK1α in diseased conditions facilitates its selective targeting for therapeutic management. Here, we have performed virtual screening of phytoconstituents from the IMPPAT database seeking potential inhibitors of CK1α. First, a cluster of compounds was retrieved based on physicochemical parameters following Lipinski’s rules and PAINS filter. Further, high-affinity hits against CK1α were obtained based on their binding affinity score. Furthermore, the ADMET, PAINS, and PASS evaluation was carried out to select more potent hits. Finally, following the interaction analysis, we elucidated three phytoconstituents, Semiglabrinol, Curcusone_A, and Liriodenine, posturing considerable affinity and specificity towards the CK1α binding pocket. The result was further evaluated by molecular dynamics (MD) simulations, dynamical cross-correlation matrix (DCCM), and principal components analysis (PCA), which revealed that binding of the selected compounds, especially Semiglabrinol, stabilizes CK1α and leads to fewer conformational fluctuations. The MM-PBSA analysis suggested an appreciable binding affinity of all three compounds toward CK1α.


2021 ◽  
Vol 36 (1) ◽  
Author(s):  
Stefanie Ruhs ◽  
Bruno Griesler ◽  
Ralf Huebschmann ◽  
Katharina Stroedecke ◽  
Nicole Straetz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document