aluminate cement
Recently Published Documents


TOTAL DOCUMENTS

427
(FIVE YEARS 141)

H-INDEX

29
(FIVE YEARS 6)

2022 ◽  
Vol 153 ◽  
pp. 106689
Author(s):  
Jennifer Astoveza ◽  
Romain Trauchessec ◽  
Sylvie Migot-Choux ◽  
Ratana Soth ◽  
Yiannis Pontikes

2022 ◽  
Vol 8 ◽  
Author(s):  
Wu Zhiqiang ◽  
Liu Hengjie ◽  
Qu Xiong ◽  
Wu Guangai ◽  
Xing Xuesong ◽  
...  

During the thermal recovery of heavy oil thermal recovery wells, improving the mechanical properties and integrity of the cement ring is of great significance for the safe and efficient exploitation of heavy oil resources. This paper studies the relative properties of calcium aluminate cement and three kinds of slags under the conditions of 50°C × 1.01 MPa and 315°C × 20.7 MPa. CAC-slag composite material performance was evaluated using the cement paste compressive strength and permeability tests to study the physical properties of CAC with blast furnace slag. X-ray diffraction analysis, scanning electron microscopy (SEM), and thermal analysis (DSC/TG) were carried out to investigate the mineralogical composition of CAC with blast furnace slag. Results show that adding blast furnace slag did not affect the performance of cement slurry. Moreover, C2ASH8 curing occurred at low temperature, the microstructure of CAC paste was compact, and the permeability resistance was improved, thus improving the low-temperature properties of neat CAC. When cured at a high temperature, the CAC paste was mainly hydrated with C3ASH4 and AlO(OH), which had a well-developed crystal structure. Adding blast furnace slag can improve the CAC resistance to high temperature.


Author(s):  
Sherif Adel ◽  
Kentaro Hashimoto ◽  
Nobuyuki Kawashima ◽  
Takahiro Wada ◽  
Motohiro Uo ◽  
...  
Keyword(s):  

2021 ◽  
Vol 21 (6) ◽  
pp. 1-7
Author(s):  
Seunghak Choi ◽  
Seungyeon Han ◽  
Hyeonsuk Kim ◽  
Kyongku Yun ◽  
Taeho Ha

Shotcrete should be attached to the ground and should have stable strength for a long-term. It should develop strength earlier for rapid work. Therefore, in this study, three types of accelerators—aluminate, cement mineral, and alkali-free—were selected and mixed to secure the initial strength. Depending on the type and mixing rate of each accelerator, slump, air amount, and compressive strength were used to evaluate the basic properties, boiling water absorption test, and chloride ion penetration resistance to conduct durability analysis. The mixing of aluminate-based and cement-mineral-based accelerators was effective in improving the initial strength, and alkali-free accelerator was effective in improving the long-term strength. The mixture to which accelerators were not mixed showed the highest water-tightness.


2021 ◽  
Vol 12 (1) ◽  
pp. 266
Author(s):  
Seungyeop Chun ◽  
Geumyeon Lee ◽  
Sujin Kim ◽  
Bora Jeong ◽  
Jeehoon Shin ◽  
...  

With the development of the powder bed 3D printing process, sand casting can be performed with methods that are more advanced than the traditional ones, thus enabling new research on applied materials. When sand is 3D-printed with cement as a binder, its casting performance is improved and sufficient thermal stability of conventional organic and inorganic binders is ensured. In this study, to ensure high resolution and strength in a physical and simple mixture of cement and sand, the compatibility for casting was confirmed using submicron-level cement with ingredients and sizes similar to commercial sand, which is uniformly controlled at 4 µm, instead of conventional sand. To enable quick 3D printing, calcium aluminate cement, which has quick binding properties, was used for high-temperature casting. The strength up to 6 h after hydration was compared to determine the curing rate of silica, mullite, and alumina sand containing cement components. By investigating the change in strength due to heat treatment and comparing the adhesion drop test results after powder bed formation, the material containing silica sand was determined as the most suitable for powder layer 3D printing for application to the mold.


Sign in / Sign up

Export Citation Format

Share Document